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ABSTRACT 
 

In civil engineering, materials subjected to stress or strain states a quantitative evaluation of 
damage is of great importance due to the critical character of this phenomena, which at certain point 
suddenly turns into catastrophic failure. 

An effective damage assessment criterion is represented by the statistical analysis of the 
Acoustic Emission (AE) amplitude distribution signals that emerges from the growing micro-
cracks. The amplitudes of such signals are distributed according to the Gutenberg- Ritcher (GR) law 
and characterized through the b-value which systematically decreases with damage growth. 

The b-value analysis was conducted on two experimental tests carried out on concrete 
specimens loaded up to failure. The first one is a prismatic specimen subjected to uniaxial 
compression load, the second one is a pre-cracked beam subjected to three point bending test. 

The truss-like Discrete Element Method (DEM) was used to made numerical simulation on the 
experimental tests. The comparison between experimental and numerical analyses, in terms of load 
vs. time diagram and AE data, elaborated throughout the b-value and signals frequencies variations, 
provided results in good agreement. 
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1.  INTRODUCTION 
 
The most advanced method for a non-destructive quantitative evaluation of damage progression is 
the acoustic emission (AE) technique. Physically, AE is a phenomenon caused by a structural 
alteration in a solid material, in which transient elastic-waves due to a rapid release of strain energy 
are generated. AEs are also known as stress-wave emissions. 

AE waves, whose frequencies typically range from kHz to MHz, propagate through the 
material towards the surface of the structural element, where they can be detected by sensors which 
turn the released strain energy packages into electrical signals  Traditionally, in AE testing. a 
number of parameters are recorded from the signals, such as arrival time, velocity, amplitude, 
duration and frequency. From these parameters damage conditions and localization of AE sources 
in the specimens are determined, Carpinteri et. al. (2009). 

Using the AE technique, an effective damage assessment criterion is provided by the statistical 
analysis of the amplitude distribution of the Acoustic Emission (AE) signals generated by growing 
microcracks. The amplitudes of such signals are distributed according to the Gutenberg-Richter 
(GR) law, N(≥A)∝ A−b, where N is the number of AE signals with amplitude ≥ A. The exponent b of 
the GR law, the so-called b-value, changes with the different stages of damage growth: while the 
initially dominant microcracking generates a large number of low-amplitude AE signals, the 
subsequent macrocracking generates fewer signals of higher amplitude. On the other hand, the 
damage process is also characterized by a progressive localization identified through the fractal 
dimension D of the damaged domain. It may be proved that 2b=D (Aki(1967), Carpinteri 1994; 
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Turcotte (2003) ; Rundle et al. (2003); Carpinteri et al. (2008) ). Therefore, by determining the b-
value it becomes possible to identify the energy release modalities in a structural element during the 
AE monitoring process. The extreme cases envisaged are D = 3.0, which corresponds to b=1.5, a 
critical condition in which the energy release takes place through small defects evenly distributed 
throughout the volume, and D=2.0, which corresponds to b = 1.0, when energy release takes place 
on a fracture surface. In the former case diffused damage is observed, whereas in the latter case two 
dimensional cracks are formed leading to the separation of the structural element. 

Moreover, in seismology, the energy released during an earthquake can be linked with 
seismogram amplitude thanks to the classical expression proposed by Ritcher (1958), Ess  ∝ Ac, 
where: A is the earthquake amplitude, and c=[1.5, 2] is an exponent obtained experimentally from 
earthquakes measurements. Another expression appearing in a seismological context, in Chakrabarti 
and Benguigui (1997), is N(>=Ess)∝ Ess

-d, where N is the cumulative distribution of released energy 
and d=[0.8,1.1] is an exponent obtained from earthquakes observations. 
 
2 RELATIONSHIP BETWEEN SIGNAL AMPLITUDE AND THE NUMBER OF AE 
EVENTS  
 
Magnitude (m) is a geophysical log-scale quantity which is often used to measure the amplitude of 
an electrical signal generated by an AE event. Magnitude is related to amplitude (A), expressed in 
volts (V), by the following equation: 
 

m = Log A.                                                                  (1) 
 

The widely accepted Gutenberg–Richter (GR) law, initially proposed for seismic events, 
describes the statistical distribution of AE signal amplitudes : 
 

N(≥A) = ζΑ−b,                                                              (2) 
 
where ζ and exponent b are coefficients that characterize the behavior of the model. We shall focus 
our attention on coefficient b.  
 

By rewriting Eq. (2.2) as a logarithmic equation: 
 

Log( N≥A) = Log ζ−bm,                                                   (3) 
 
where N is the number of AE peaks with magnitude greater than m, and coefficient b, referred to as 
‘‘b-value”, is the negative slope of the Log N vs. m diagram. Microcracks release low-amplitude 
AEs, while macrocracks release high-amplitude AEs. This intuitive relationship is confirmed by the 
experimental observation that the area of crack growth is proportional to the amplitude of the 
relative AE signal Pollock (1973). 

From Eq. (2.3) we find that a regime of microcracking generates weak AEs, and therefore leads 
to relatively high b-values (raising the threshold m, gives rise to a fast decline in the number of 
surviving signals). When macrocracks start to appear, instead, lower b-values are observed. 

Therefore the analysis of the b-value, which changes systematically with the different stages of 
fracture growth has been recognized as a useful tool for damage level assessment. In general terms, 
the fracture process moves from micro to macrocracking as the material approaches impending 
failure and the b-value decreases. While testing the materials undergoing brittle failure, the b-value 
is found to be around 1.5 in the initial stages. It then decreases with increasing stress level to ≈1.0 
and even less as the material approaches failure: 
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Furthermore, as pointed out in Carpinteri et. al. (2009), the statistical analysis of b-values is 
closely correlated with the fractal geometry approach in the damage and fracture mechanics of 
heterogeneous materials. Fractal geometry is the natural tool to characterize self-organized 
processes, emphasizing their universality and the scaling laws arising at the critical points. 

 

3. THE TRUSS-LIKE DISCRETE ELEMENT METHOD 

The truss-like DEM used in this work represents the continuum by means of a periodic spacial 
arrangement of bars with the masses lumped at their ends. A lumped mass of ( 3 2Lρ ) corresponds 
to each internal node, where ρ is the density and L the length of a cubic module. The nodes will 
have a lumped mass of ( 3 16Lρ ) if they are localized in the corner, ( 3 8Lρ ) on the edges and 
( 3 4Lρ ) on a free surface. The discretization uses a basic cubic module constructed using 20 bar 
elements and 9 nodes showed in Figure 1(a) and 1(b). Every node has three degrees of freedom, 
which are the three components of the displacement vector in the global reference system.  
 

 
Figure 1. DEM discretization strategy: (a) basic cubic module, (b) generation of a prismatic body. 

 
In case of an isotropic elastic material, the cross-sectional area Al of the longitudinal elements 

(those defining the edges of the module and those parallel to the edges connected to the node 
located at the centre of the module) in the equivalent discrete model is: 

2
lA Lφ=                                                                       (4) 

where L is the length of the side of the cubic module under consideration. The function 
( ) ( )9 8 / 18 24φ δ δ= + + , where ( )9 / 4 8δ ν ν= − , accounts for the effect of the Poisson’s ratio ν. 

Similarly, the area Ad of the diagonal elements is: 

22
3dA Lδφ=                                                                (5) 

The coefficient 2 3  in equation (2) accounts for the difference in length between the longitudinal 
and the diagonal elements, this is, 2 3 dL L= ⋅ . 
To arrive at expression of φ it is necessary to have equivalence between the isotropic elastic 
coefficient matrix and a computation of the equivalent directional properties of the bars as proposed 
by Nayfes Heftzy (1978). 
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It is important to point out that for ν = 0.25, the correspondence between the equivalent discrete 
solid and the isotropic continuum is complete. On the other hand, discrepancies appear in the shear 
terms for values of ν ≠ 0.25. These discrepancies are small and may be neglected in the range 0.20≤ 
ν ≤0.30. For values outside this range, a different array of elements for the basic module should be 
used (see Nayfeh and Hefzy, 1978). It is interesting to note that while no lattice model can exactly 
represent a locally isotropic continuum, it can also be argued that no perfect locally isotropic 
continuum exists in practical engineering applications. Isotropy in solids is a bulk property that 
reflects the random distribution of the constituent elements orientation. 
The equations of motion are obtained from equilibrium conditions of all forces acting on the nodal 
masses, resulting in a system of equations of the form: 

( ) ( ) +  +  - 0t t =M x Cx F P&& &                                                      (6) 

in which x , x&  and x&&  denote vectors containing the nodal displacements, velocities and 
accelerations, respectively, while M and C are the mass and damping matrices, both are diagonals 
and the damping matrix is proportional only to the mass. The vectors ( )tF  and P (t) contain the 
internal and external nodal load.   

Following the Courant-Friedrichs-Lewy criterion (see Bathe, 1996), the stability of the 
integration scheme is ensured by limiting the size of the time step. For the present implementation, 
the elements in the worst condition (this is, those requiring the smallest Δt) are the diagonal ones. 
Thus, considering the relationships in Equations (4) and (5), the limitation to the time increment is: 

0.6Lt
Cρ

Δ ≤                                                                            (7) 

where Cρ  is the longitudinal wave speed, 

/C Eρ ρ=                                                                        (8) 

The truss-like DEM has a natural ability to model cracks. They can be introduced into the 
models as pre-existent features and as the irreversible effect of crack nucleation and propagation. 
Pre-existent cracks are modeled using a simple strategy which consists in duplicate  the nodes 
located on the crack surface together with the elimination of the elements connecting the material 
on both sides of the crack. This way, the DEM discretization is allowed to “open” along the crack 
locus, and pre-existent cracks are integrated seamlessly into the DEM formulation. Crack nucleation 
and propagation make use on non-linear constitutive models for material damage which allow the 
elements to break when they attain a critical condition. The details about the formulation and 
implementation of these non-linear constitutive models are given in the next section. 

3.1 Non-linear constitutive models for material damage 

Rocha et al. (1991) extended the lattice method here implemented (DEM) to model quasi brittle 
materials. To this end, they introduced the bilinear constitutive relationship illustrated in Figure 2. 
This constitutive law aims to capture the irreversible effects of crack nucleation and propagation by 
accounting for the reduction in the element load carrying capacity. The area under the force versus 
strain curve (the area of the triangle OAB in Figure 2) is the energy density necessary to fracture the 
area of influence of the element. Thus, for a given point P on the force vs. strain curve, the area of 
the triangle OPC represents the reversible elastic energy density stored in the element, while the 
area of the triangle OAP is the dissipated fracture energy density. Once the dissipated energy 
density equals the fracture energy, the element fails and loses its load carrying capacity. On the 
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other hand, in the case of compressive loads the material behaves as linear elastic. Thus, the failure 
in compression is induced by indirect traction. This assumption is reasonable for quasi-brittle 
materials for which the ultimate strength in compression is usually from five to ten times larger than 
that in tension (see Kupfer and Gerstle, 1973). 
 

 
Figure 2. Triangular constitutive law adopted for DEM uni-axial elements. 

 
Constitutive parameters and symbols in Figure 2 are (see Rocha et al., 1991; and Riera and Rocha, 
1991): 
 
• Force, F: the element axial force as a function of the longitudinal strain ε. 

• Element area, A: depending whether a longitudinal or a diagonal element is considered the 
values for Al or Ad, see equations (4) and (5), should be adopted. 

• Element stiffness: depending whether a longitudinal or a diagonal element is obtained 
multiplying the Young Modulus (E) by Al or Ad, should be adopted.  

• Length of the DEM module, L. 

• Specific fracture energy, Gf: the fracture energy per unit area, which is coincident with the 
material fracture energy, Gc. 

• Equivalent fracture area, f
iA : this parameter enforces the condition that the energy dissipated 

by the fracture of the continuum material and its discrete representation are equivalent. With 
this purpose, a cubic sample with dimensions L×L×L is considered. The energy dissipated when 
a continuum sample fractures into two parts due to a crack parallel to one of its faces is 

2
f fG G LΓ = Δ =                                                                (9) 

where Δ is the fracture area. By contrast, the energy dissipated when the DEM module fractures 
in two parts has to account for the contribution of five longitudinal elements (four coincident 
with the module edges and one internal one) and four diagonal elements, see Figure 1(a). Then, 
the energy dissipated by a DEM module can be written as follows 

2
2

DEM
24 0.25 4  
3f A A AG c c c L

⎛ ⎞⎛ ⎞Γ = + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
                                  (10) 

Damage energy, 
Udmg 

Elastic strain 
energy, Uel 
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where the first term in the sum accounts for the four edge elements, the second term accounts 
for the internal longitudinal element, and the third term considers the contribution of the four 
diagonal elements. It is worth noting that the coefficient 0.25 in the first term accounts for the 
general case of an internal module with its four edge elements shared with four neighbors 
modules. When dealing with modules on the model surface, some of the edge elements could be 
shared by two elements or not shared at all. For such cases expression (10) has to be modified 
accordingly.  
The coefficient cA in equation (10) is a scaling parameter used to enforce the equivalence 
between Γ and ΓDEM. Thus, equating expressions (9) and (10) results 

              2 222
3f f AG L G c L⎛ ⎞= ⎜ ⎟

⎝ ⎠
                                                        (11) 

from which it can be easily deduced that 3 22Ac = . Finally, the equivalent transverse fracture 
area of the longitudinal elements is 

( ) 23 22f
lA L=                                                              (12) 

while for the diagonal elements is 

( ) 24 22f
dA L=                                                              (13) 

•  Critical failure strain (εp): the maximum strain attained by the element before damage initiation 
(point A in Figure 2). The relationship between εp and the specific fracture energy, Gf, is given 
in terms of Linear Elastic Fracture Mechanics concepts. In this way 

( )21
f

p f

G
R

E
ε

ν
=

−
                                                       (14) 

where fR  is the so-called failure factor, which accounts for the presence of an intrinsic defect of 
size d. fR  is defined as 

1
fR

Y d
=                                                                 (15) 

where Y is a dimensionless parameter that depends on both the specimen and the crack 
geometry. 
It is worth noting here that the intrinsic defect size, d, is predetermined, and it could be consider 
as a material property.  
Any disorder in the material properties is introduced to the model by specifying a random 
distribution in the specific fracture energy, Gf.  

• Limit strain (εr): the strain value for which the element loses its load carrying capacity (point C 
in Figure 2). This value must be set to satisfy the condition that, upon the failure of the element, 
the dissipated energy density equals the product of the element influence area, f

iA  , times the 
specific fracture energy, Gf, divided by the element length. This is 

( )
2

0

   
2

r f
f i r p i

i

G A K E A
F d

L

ε
ε

ε ε = =∫                                              (16) 
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in which the sub indexes i have to be specialized to l or d depending whether the element under 
consideration is a longitudinal or diagonal one, respectively. 
The coefficient Kr in equation (16) is a function of the material properties and the element 
length, Li. With equation (16), the expression for Kr can be retrieved: 

2

2f
f i

r
p i i

G AK
E A Lε

⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

                                                       (17) 

In order to guarantee the stability of the algorithm, the condition Kr ≥ 1 must be accomplished 
(Riera and Rocha, 1991). In this sense it is interesting to define the critical element length 

22
f

f i
cr

p i

G AL
E Aε

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                                        ( 18) 

The coefficient 
f

i

i

A
A

⎛ ⎞
⎜ ⎟
⎝ ⎠

 in equation (18) is 
3

22

f
l

l

A
A φ

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 and 

3
11

f
d

d

A
A δφ

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 for the longitudinal 

and diagonal elements respectively (see equations (4), (5), (12) and (13)). In the special case of 
an isotropic continuum with ν =0.25, the value of the functions δ=1.125 and φ=0.4, which 

results in 0.34
f f

l d

l d

A A
A A

⎛ ⎞ ⎛ ⎞
≈ ≈⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. Thus, for practical purposes a single value of the critical 

element length can be used for both the longitudinal and diagonal elements. Therefore, the 
above stability condition can be expressed as: 

1cr
r i cr

i

LK L L
L

= ≥ ⇒ ≤                                                   (19) 

There is a maximum element length which preserves the stability of the element constitutive 
relationship. 
Finally, the expression for the limit strain is 

r r pKε ε=                                                                   (20) 

It is interesting to note that in contrast to the usual practice in finite and boundary elements, the 
constitutive relationship in the DEM is not a function of the material properties only. The element 
constitutive relationship introduced above is defined in terms of parameters which are material 
properties (εp, E, Rfc and Gf), depend on model discretization ( f

iA  and L) and depend on both, the 
material properties and the model discretization ( A

iE  and εr). Besides, it is worth noting that 
although the DEM uses a scalar damage law to describe the uniaxial behavior of the elements, the 
global model accounts for anisotropic damage since it possesses elements orientated in different 
spatial directions. More sophisticated constitutive law that lets us incorporate more flexibility in the 
shape of the constitutive law and including plasticity discharge is published in Kosteski et al. 
(2011).  

Studies about mesh convergence carried with DEM using mesh coarser that presented in the 
applications are shown in Kosteski et al. (2011), Miguel (2010). When we have interest in 
calibrating some problem it is necessary to adjust four parameters for a simple test that are, the 
global Elastic modulus (E), the density ρ, the Gf that is connected directly with the material 
toughness and the called critical strain εp connected with the strain in which the global model lives 
to be linear. If the model takes into account the random nature of the material, for example 
considering a Gf as random field, the characteristic of the distribution and its correlation length must 
be also furnished. 
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Another important feature of this approach is the assumption that Gf is a 3D random field with 
a Weibull probability distribution.  

The local strain associated with maximum loading in each bar is called critical strain (εp). This 
value is also a random variable and its variability, which is measured using the coefficient of 
variation CV, is related to the Gf parameter by the following equation 

 
CV(εp) = 0.5 CV (Gf).                                                         (21) 

 
The minimum value of εp determined in all the specimen bars is associated with the global 

strain for which a specimen loses linearity.  
More exhaustive explanations of this version of the lattice model may be found in Kostesky  

(2011), (2012) Applications of the DEM in studies involving non-homogeneous materials subjected 
to fracture, such as concrete and rock, may be found in Riera and Iturrioz (1998), Dalguer et al. 
(2003)],  Miguel et al. (2008 ), Iturrioz et al. (2009), and Miguel et al. (2010). 
 
4. NUMERICAL AND EXPERIMENTAL RESULTS RELATED TO ACOUSTIC 
EMISSION 

 
In the following, illustrative experimental results as well as numerical simulations of laboratory 
tests aimed at the determination of the b value on small scale rock or concrete samples are described 
in detail. Updated information on the fundaments and performance of the lattice formulation of the 
Discrete Element Method (DEM) proposed by Riera (1984), which was employed in the numerical 
analyses reported below, may be found in Kosteski et al. (2011). The study will focus on Accoustic 
Emmission (AE) tests reported by Carpinteri et al. (2009). The first test consists of a 
160×160×500mm concrete prism subjected to uniaxial compression. The laboratory specimen was 
modeled by means of a 27×27×86 DEM cubic modules array, with the boundary conditions shown 
in Figure 5b. The parameters adopted in the DEM model are: Young´s modulus of the material 
E=9.0 GPa, mass density ρ=2500Kg/m2, mean value of the material toughness μ(Gf)=560N/m and 
the linear elastic limit strain εp=2.4×10−4. The random nature of the material is taken into account 
by assuming the toughness as a random field with a coefficient of variation CV= 0.5. The value of 
the concrete modulus E=9GPa was adopted on account of the fact that the test sample was 
subjected during 48 hours to a uniform compression load of 1300 kN, then unloaded. During the 
ensuing test the damaged specimen was reloaded up to its final collapse while monitored by AE 
sensors. Figure 5(b) shows the location of the AE sensor, at which accelerations in the direction 
normal to the specimen surface were computed employing the DEM.  

The second example consists of a three point bending test. The concrete specimen dimensions 
were (80×150×700mm) with a 30mm pre-fissure length in the middle. The AE sensor was mounted 
as indicated by the gray box in Figure 6(b). Material properties were E=35GPa, ρ=2500Kg/m2, 
mean value of the toughness μ(Gf)=130N/m and linear elastic limit strain εp=6.4×10−5. Additional  
details concerning the experiments are given by Carpinteri et al. (2009, 2009b). Again, the non-
homogeneous nature of concrete is taken into account in the numerical simulations by assuming that 
the toughness is a 3D random field with CV= 0.25, moreover the applied displacement rates on 
DEM models were reduced until no inertial effects could be detected in the output.   

Figure 3 shows the load vs. time diagrams measured in the experiments and determined herein 
by numerical simulation. The peak loads and the areas under the curves are similar in both 
examples, except for the loss of linearity of the experimental curve for uniaxial compression near 
the peak load, which suggests that large damage occurred before the peak, effect that is not 
observed in the numerical analysis. The load vs. time diagrams of both controlled displacement tests 
are quite different: in the compression test an explosive collapse occurs, while in the three point 
bending test a softening branch after the peak load is reached can be seen. Figure 4 shows the 
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normalized energy balance in both tests determined by numerical simulation. In the uniaxial 
compression test, 95% of the external work is available in the form of elastic energy when the final 
collapse occurs, resulting in an explosive failure. On the other hand, in the three point bending test 
the external work is smoothly dissipated during the entire process and the available potential energy 
at the end of the test is not sufficient to produce an explosive collapse. Note that Emax=Ue+Uk+Ud at 
t*. In both examples, due to the slow rate of loading, the kinetic energy remains low throughout 
most of the test, although when collapse occurs under uniaxial compression, there is a sudden shift 
of elastic energy to kinetic energy. The final rupture configurations observed in the experimental 
setup and predicted numerically can be seen for the uniaxial compression test in Figure 5 and for 
the Three Point Bend test in Figure 6. 

 

 
Figure 3. Load vs. time functions determined experimentally (continuous lines) and numerically (dashed lines): (a) Uniaxial 

compression test, (b) The three point bending test. 
 
A summary of the numerical results concerning Acoustic Emission (AE) for both tests is 

presented next. They are considered as AE signal in the numerical simulation the normal surface 
acceleration in points localized on the specimen. Figure 7 shows the occurrence of individual AE 
events as vertical bars on the time axis. The height of each bar is proportional to the intensity of the 
event, registered on the sample surface. The figure also shows the total load vs. time curves on the 
samples. Histograms of the number of AE events and the evolution with time of the accumulated 
number of events are shown in Figure 8 for the uniaxial compression test and for the three points 
bending test. Finally Figure 9 shows the relations between the number of AE events and their 
magnitudes in logarithmic scale. Straight lines were fitted to the simulated data within selected time 
intervals, as indicated in the graphs. The magnitude scale was normalized. All the signals utilized 
for the b-values calculation in the numerical simulation had higher amplitudes than the fixed 
threshold Athres. For this reason, only few events were identified in the simulation (about 200 in each 
example). By decreasing even further the displacement rate and adoting a lower threshold, it would 
be possible to identify more AE peaks, thus increasing the sample size, but the extension of the 
analysis was considered unnecessary. The values of b computed in both examples are compatible 
with the values determined experimentally by Carpinteri et al. (2009, 2009b). In addition, the 
numerical simulations reproduced the tendency observed in laboratory experiments, which show 
that b decreases towards values around unity as the degree of damage increases. Note that in the 
uniaxial compression test the b value was observed to decrease from 1.69 to  1.19, while according 
to DEM predictions it decreases from 1.47 to 1.16. In the laboratory bending test, b decreases from 
1.49  to 1.11, while the numerical simulation predicts a decrease from 1.10 to 1.03. 
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Figure 4. Energy balance vs time (Ue= elastic energy, Uk= kinetic energy, Ud= dissipated energy (a) Uniaxial compression 

(Emax=4888Nm), (b) Three point bending (Emax=0.65Nm). 
 

 

 
 

Figure 5. (a) Final rupture configuration of concrete specimen subjected to uniaxial compression (Carpinteri et al., 2009) and 
(b) collapse configuration predicted by DEM model after peak load is reached (only nodal masses are shown). The white 

rectangle indicates the position of the sensor. 
 
Finally Figure 10 presents plots of the logarithm of the number of events larger than given 

amplitudes vs. the logarithms of the amplitudes for the DEM simulations of the compression test 
(left plot) and of the three points bending test (right plot). Notice that the shape of these curves are 
similar to the typical curve for seismic data shown in Figure 3, which according to Scholz (2002), 
from the size distribution of subfaults, may be expected to present slopes given by b1= ⅔ and b2= 1. 
While similar values are usually found in actual seismic records for specific faults or seismic 
regions, they differ from some of the laboratory or numerical simulations results for small samples 
discussed herein.  

       
                             (a)                                                                           (b)                                                    
Figure 6. (a) Detail of the exerimental rupture configuration of the specimen subjected to Three Point Bending (Carpinteri et al., 

2009a) (b) Numerical rupture configuration according to DEM (only damaged bars are plotted). The small gray rectangle 
indicates the position of the sensor. 
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Figure 7. The continuous curves indicate the total load in the DEM models, while the bars show the amplitudes of AE events. Both 

axis were normalized to the maximum value. (a) Uniaxial compression test, (b) Three points bending test. 

 
Figure 8. Histograms of the number of AE events and evolution with time of the accumulated number of AE events (thich line) and 

loas evolution (thin line) for: (a) Uniaxial compression test, (b) Three points bending test. 
 
5. CONCLUSIONS 
 
In this work, two experimental tests carried out on concrete specimens loaded up to failure are 
analyzed. One was a prismatic specimen subjected to uniaxial compressive loading, the other was a 
pre-cracked beam subjected to the three point bending test. For both examples experimental and 
numerical results are presented. The numerical simulations were performed using a version of the 
truss-like Discrete Element Method (DEM). During the tests, the Acoustic Emission (AE) technique 
was used to monitor the damage process taking place in the specimens. The numerical and 
experimental results obtained in the two examples are compared, and their intrinsic differences are 
identified. 
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Figures 9. Determination of  b - coefficients for simulated response in (a) uniaxial compression test and (b) three point bending test. 

The time intervals intervals used in the computation of b values are indicated between brackets. 
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Figure 10. plots of the logarithm of the number of events with amplitudes larger than A vs. the logarithm of A for the DEM 

simulations of compression (left) and of three points bending (right). The b values in the high magnitudes regions are b2= 2.40 
(compression) and b2= 1.16 (bending).  

 
From these analyses, the following conclusions may be drawn. 
 

- The comparison between the experimental and numerical results shows reasonable correlations, 
for both examples, in terms of conventional results, such as load vs. time and final 
configurations. 

 
- In terms of the distribution of AE event amplitudes in time, the results were seen to be 

consistent, and any differences observed between the experimental and numerical results were 
accounted for. It is important to point out that the numerical b-values obtained are compatible 
with the experimental values and in good agreement with damage theories (Carpinteri et. al. 
(2009) ), showing a tendency to decrease during the damage process. 

 
- The low number of AE events analyzed in the numerical simulations (fewer than 200 events in 

both cases) compared with the number determined by AE monitoring is an issue to be 
discussed in detail in relation to the results obtained. However, the aim of these numerical 
simulations, as mentioned above, was to identify the general trends on a preliminary base. To 
increase the number of AE events analyzed in the numerical simulations you need a finer 
discretization, something we shall do after this initial exploration of the applicability of DEM 
simulations to this kind of process. 

 
- This study has shown the potential applications of the truss-like Discrete Element Method 

(DEM) not only to simulate AE monitoring analysis, but also to provide a better understanding 
of the relationships between the basic AE parameters. 

 

(a) (b) 

(a) (b) 
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