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Abstract   The K-dominant zone, which is a small area surrounding the fracture tip, has been the 
interesting focus of the fracture mechanics. In the traditional linear elastic fracture mechanics(LEFM), a 
stress intensity factor is used to characterize the stress field of the K-dominant zone and a separate fracture 
criterion is used to predict the fracture behaviors. However, when using LEFM to simulate fracture 
propagation, the computation of stress intensity factor is a tough problem. The LEFM is actually a 
phenomenological methodology. The fracture behaviors are determined by material microstructure. The 
augmented virtual internal bond(AVIB) is a constitutive model based on microstructure. Its constitutive 
relation is derived from the micro bond potential, which contains the micro fracture mechanism. Hence, the 
so-called fracture criterion is implicitly built in the constitutive relation. In this paper, the AVIB constitutive 
model is used in the K-dominant zone while the usual linear elastic constitutive model is used in the rest 
zone to simulate fracture propagation. By this method, the computation of stress intensity factor is avoided. 
When and how fracture propagation is completely governed by the AVIB constitutive relation. It provides an 
efficient approach to fracture simulation. 
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1. Introduction 
 
In the methodology of linear elastic fracture mechanics(LEFM), the singular mechanical field of 
crack tip is characterized by the so-called stress intensity factors (SIFs). Whether fracture 
propagates is governed by SIF and material fracture toughness. So, many fracture criteria in terms 
of SIFs have been proposed. When using FEM to simulate fracture behaviors, the SIF is a key 
factor that has to be calculated. However, the computation of SIF is a tough problem in 
computational mechanics, which requires very fine mesh scheme at vicinity of crack tip or special 
treatment on mesh scheme. The cohesive surface methodology pioneered by Barenblatt[1] and 
Dugdale[2] take a different philosophy to deal with the fracture tip problem. It is assumed that there 
is a cohesive zone ahead of crack tip, which is governed by a cohesive law. The cohesive law is 
characterized by the cohesive strength and the fracture energy. When using this method, the stress 
intensity problem, therefore the SIF problem, is avoided. However, in FEM simulation, a cohesive 
zone is usually inserted into the bulk material, which brings inconvenience to numerical procedure. 
In the present paper, the cohesive properties of microstructure at vicinity of crack tip are directly 
built in the constitutive relation through augmented virtual internal bond(AVIB)[3] model. Hence, 
in the present simulation strategy, only at the K-dominant zone is the AVIB constitutive model used 
while at the rest zone, the linear elastic constitutive model is used. The present method is suggested 
highly efficient, avoiding the SIF computation and fracture criteria problem. 
 
2. Constitutive relation of material at vicinity of crack tip 
 
Before the deformation of material reaches its linear elastic limit, the linear elastic continuum 
constitutive relation can well describe the behaviors of material. However, once the deformation 
exceeds this limit, the conventional continuum constitutive model couldn’t well describe it. In such 
situation, the augmented virtual internal bond(AVIB)[3] is an effective approach to address this 
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problem. Hence, the idea of the present method can be depicted by Fig.1. At the K-dominant zone 
which experience large deformation, the AVIB constitutive model is used while at the rest zone 
where the deformation is small, the linear elastic constitutive model is adopted. 

                         
Fig.1 Depiction of the constitutive approach to fracture simulation. 

In VIB theory[4], the solid is considered to consist of randomized discrete material particles on 

micro scale and the constitutive relation is directly derived from the interactions between material 

particles. The AVIB generalizes the original VIB model in that the shear deformation effect between 

material particles is considered via Xu-Needleman potential. Therefore, the AVIB can represent 

material with different Poisson ratios. The micro structure of AVIB is shown in Fig.1.  
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Fig.2 Micro structure of AVIB and micro bond deformation (ε denotes the strain tensor; ξ the bond 

orientation vector; 0l the original bond length) 

The micro bond can be described by the following simplified Xu-Needleman potential[5] 
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where nΔ , tΔ are respectively the normal and shear bond deformation. In AVIB, they are 

calculated as 
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Based on Eq.(2), define the second-order tensor N , P and the forth-order tensor 

Q respectively as  
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where  ijδ  being the Kronecker delta. 

According to this micro structure, the strain tensor of material[3] can be derived as 

1 n t
ij

ij n ij t ij

U U
V

σ
ε ε ε

∂Δ ∂Δ∂Φ ∂ ∂
= = ⋅ + ⋅
∂ ∂Δ ∂ ∂Δ ∂

                     (4) 

and the tangent modulus of material as 
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in which Φ  denotes the strain energy density of a micro element;ε the strain tensor; V the volume 

of the micro element and ( )
2

0 0
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π π
θ φ θ θ φ= ∫ ∫L L  in spherical coordinates for 3D case 

and ( )
2
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Substituting Eqs.(1,2,3) into Eqs.(4,5), the stress tensor and tangent modulus tensor can be rewritten 

as 
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in which the coefficients are respectively  
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The coefficient in Eq.(8) are respectively  
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In [3], Zhang and Gao proposed a remedy method for element size sensitivity, which essentially 

embedded the fracture energy into the constitutive relation. By adjusting the material parameters at 

fracture tip, AVIB can keep the strain energy release rate constant. According to the idea of AVIB, 

the adjusted parameters at crack tip is 

0 0 0 0, , ,n n t tA A B Bλ λ δ λδ δ λδ= = = =% % %%             (10) 

where λ is the adjustment coefficient. The adjustment coefficient takes the following values for 

different cases. 
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in which J is the intrinsic J-integral of material; h is the element size, as  

h c S=                                   (12) 

where S  is the area of an element and c is a geometrical factor. In the numerical examples 

discussed in the next section, take 4 2c = . 

 

3 . Criterion of crack tip element 

When using the present method, it is necessary to identity the element of crack tip. Usually, the 
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crack tip element deformation is very large. Hence, to detect the crack tip element, the following 

criterion is adopted in the present paper. 

1 tε ε>                                 (13) 

In which 1ε is the first principle eigenstrain value of strain tensor.  

 
4 . simulation example 
 
To show the validation of the present method, a three-point-bending(TPB) test reported in[6] is 
presented simulated. The material parameterrs provided by [6] are: the Young’s modulus 

30.5E = GPa, Poisson ratio 0.2ν = ; tensile strength 3.8tf = MPa and fracture energy 
62.5fG = N/m. With these parameters, the calibrated parameters are 30.2486 10tε

−= ×  and 
32.486 10cε
−= × . The specimen, boundary conditions and mesh configuration are shown in Fig.3. 

The displacement controlling loading scheme is adopted. Each step is 0.002486 mm. 
   P 

 
Fig.3 The specimen and boundary conditions of TPB test. 0.075D = m and the sample thickness is 0.05m. 
 
The simulation results are shown in Fig.4 and Fig.5. From Fig.4, it is seen that crack propagates 
gradually with loading increasing. The propagation pattern agrees with the observation in the 
experiment[6]. Fig.5 shows the comparison between the experimental and the simulated results. 
From Fig.6 it is seen that the present method can well predict the fracture propagation, free of the 
element size sensitivity problem. 
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(e) 

Fig.4 Crack propagation process (a) Step = 6; (b) Step = 16; (c) Step = 30; (d) Step = 50; (e) Crack tip zone 
zoomed in at Step =50. (Node displacement is magnified 200 times.) 
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Fig.5 Comparison between the simulated load-displacement curves and the experimental results. (‘Exper.’ 
denotes the experimental results. The beam is discretized into N segments along the width in the middle 

cross section of beam. Esize1, Esize2 ,Esize3 and Esize4 correspond to the segment number 32, 64,128,and 
256, respectively.) 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-7- 
 

 
5 .Conclusion remarks 
 
At the K-dominant zone, a micro-macro cohesive constitutive model is used while at the rest zone, 
the linear elastic constitutive model is used. By this method, the fracture propagation can well be 
predicted. The simulation example suggests that the present method is validated. By the present 
method, the fracture criterion is directly built in the constitutive model. It avoids the choice of 
separate fracture criterion problem and the computation of stress intensity factor, which brings great 
convenience to fracture simulation. 
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