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Abstract  A 2-D time-domain boundary element method (BEM) is developed to study the static and dynamic 

fracture problems in thin piezoelectric structures under electromechanical loadings. The traditional displacement 

boundary integral equations (BIEs) are applied on the external boundary and the hypersingular traction BIEs are 

applied on the crack faces. The present time-domain BEM uses a quadrature formula for the temporal 

discretization to approximate the convolution integrals and a collocation method for the spatial discretization. 

Quadratic quarter-point elements are implemented at the crack tip. The strongly singular and hypersingular 

integrals are evaluated by a regularization technique based on a suitable variable change. The nearly singular 

integrals arisen in thin structures are dealt with by two ways. The first one is based on a nonlinear coordinate 

transformation method for curve-quadratic elements. The second method is on an analytical integration method 

for straight quadratic elements to avoid the nearly singularity. A displacement extrapolation technique is used to 

determine the dynamic intensity factors (DIFs) including the dynamic stress intensity factors (DSIFs) and 

dynamic electrical displacement intensity factor (DEDIF). Some examples are presented to verify the 

effectiveness and stability of present BEM in thin piezoelectric structures. 
 
Keywords  thin piezoelectric structure, time-domain boundary element method, nearly singular integration, 
dynamic intensity factors 
 

1. Introduction 
 
With intrinsic electro-mechanical coupling characteristics, piezoelectric materials are widely used 
in smart structures. For typical engineering piezoelectric materials like PZT and PVDF, it’s difficult 
to be applied to the complicated shape structures. Therefore, painting technology is developed, 
which forms piezoelectric coatings on the structures to produce electro-mechanical coupling 
function. But cracks may occur in the coating or between the coating and the matrix during 
preparation or under complex electro-mechanical loadings. So it’s significant to study the fracture 
problems in the thin piezoelectric structure. 
 
For general dynamic crack problems in piezoelectric materials, numerical methods are more 
feasible due to the mathematical complexity of the initial boundary value problems. Particularly, 
Boundary Element Method (BEM) has certain advantages in fracture analysis. In 2008, 
time-domain BEM for transient dynamic crack analysis of linear piezoelectric solids was 
implemented by García-Sánchez et al. [1], who used the Lubich convolution quadrature formula for 
the temporal discretization and a collocation method for the spatial discretization. However, its 
extension to dynamic cracks in thin piezoelectric structures is not straight-forward, since the 
corresponding dynamic Green’s functions have quite complicated mathematical structures, which 
generate nearly singularity during integration when the field point is very close to the source point. 
In 2002, Liu and Fan [2] successfully applied the BEM in the static analysis of thin piezoelectric 
solids. The nearly singular integrals were solved by an analytical method. But they didn’t take 
cracks into consideration. 
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To apply the time-domain BEM to the crack analysis of thin piezoelectric structures, two methods 
are developed to deal with the nearly singular integrals. The first one is based on a nonlinear 
coordinate transformation method for curve-quadratic elements. The second method is on an 
analytical integration method for straight quadratic elements. Numerical results are presented to 
verify the accuracy of the present integral equations and the time-domain BEM. 
 
2. Time-domain BIEs for Piezoelectric Materials 
 
2.1. Piezoelectric Equations 
 
Consider a 2D homogeneous, linear cracked piezoelectric solid occupying domain   with 
boundary  . To describe the electric-elastic fields, the ‘extended’ variables uJ, fJ, σiJ, εJi are 
defined:  
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which combine the elastic variables involving the displacement uj, body force fj, stress σij, strain εij, 
and the electric ones including electric potential  , charge q, electrical displacement Dj, field Ej. 
Without body forces and electrical charge, the governing equations and the constitutive equations 
under quasi-electrostatic assumption are given by 
 *

,iJ i JK Ku   , iJ iJKl KlC  , (2) 

where ρ is the mass density, “,” designates spatial derivative, while “  ” denotes temporal derivative. 
The capital index is from 1 to 3 while lower case letter index takes 1 or 2. The extended 
Kronecker delta *

JK  is defined by 
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Material constants CiJKl are as follows, 
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in which cijkl, eijk and κik are the elasticity constants, piezoelectric constants and dielectric constants, 
respectively. The extended strain and displacement relations are given by 

  , , / 2ij i j j iu u   , ,i iE   . (5) 

 
2.2. Time-domain Boundary Integral Equations 
 
On the boundary  , the displacement and traction BIEs are 
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where cIJ(x) are free term constants, “ ” denotes Riemann convolution, Ju  are the extended 

crack-opening-displacements, G
IJu  and G

IJp  are 2D time-domain dynamic displacement and the 
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traction fundamental solutions. G
IJd  and G

IJs  are fundamental solutions of higher order. These 

fundamental solutions have been derived by Wang and Zhang [3].  
 
2.3. Laplace-domain dynamic fundamental solutions 
 
The traction fundamental solutions G

IJp  and G
IJd  have a strong singularity of Cauchy type, while 

the higher-order traction fundamental solution G
IJs  has a hypersingularity. To deal with the 

singularity, it is advantageous to split the fundamental solutions into a singular static part and a 
regular dynamic part. The singular static parts are given by 
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where 
 M Mz x y  , 0

0 0M Mz x y  , 1, 2,3M  . (11) 

0 0 0( , )x yx  is the source point while ( , )x yx  the observation point. JML , MIQ , M
IJT  and M  are 

determined by the anisotropic material constants [3]. 
 
2.4. Time-stepping scheme 
 
To approximate the Riemann convolution integrals in BIEs, Lubich quadrature formula is used [1] 
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where time t is divided into N equal time-steps, and the weights  n j t    are determined by 
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in which  ĝ   stands for the Laplace-transformation of the function g(t). After the temporal and 

spatial discretization, a system of linear equations for the discrete boundary quantities can be 
obtained. Leaving all the unknown boundary quantities on the left-hand side, an explicit 
time-stepping scheme 
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can be obtained for computing the unknown boundary quantities at the n-th time-step. 
 

3. Computation of singular integrals 
 
When a collocation point is on one element Γe, the BIEs possess strongly singular and hypersingular 
integrals. After discretization, the singular integrals correspond to the following integrals, 
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where q (q=1,2,3) is the quadratic shape function and ( )n x  donates the outward unit normal 
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vector to the boundary. A complex variable is introduced as 
 0

0 0( )M M M Mz z x x y y       . (16) 

With this transformation, 
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q  can be considered as a function of M , and its first Taylor series at 0M   is 
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With the substitution of Eq. (18) into MI , 
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The first part in Eq. (19) can be calculated by Gaussian quadrature formula. The second integral is 
strongly singular but can be evaluated analytically as 
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For MI  , the Taylor-series is expanded to two terms. Then, the integral can be transformed to 

 0 0
0 02 2

( ) 1 1
e e e

q q q M
M M q M q M

M M M

I d d d
   

    
    

  
      . (21) 

The first integral can be computed by Gaussian integral quadrature. The second and third integral 
can be evaluated analytically as 
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4. Computation of nearly singular integrals 
 
When the collocation point is very close to the integration point in thin piezoelectric structures, 
nearly singular integrals appear. To deal with this problem, two methods are developed for curve 
quadratic elements and straight quadratic element. On the analogy of the solution to the singular 
problems in section 3, the nearly singular integrals can be classified into three kinds 
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4.1. Curve quadratic element 
 
For isoparametric quadratic element, similar method as the singular integrals can be applied. Local 
coordinate system of [ 1,1]   is introduced. When collocation point 0x  is very close to e , the 

nearest point on e  to 0x  is assumed to be ( , )x y Q  which has the local coordinate   , so 

 M Mz x y    . (24) 
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With the substitution of Taylor expansion of q , MJ  can be separated into two parts as follows 
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The second integral can be calculated analytically as 
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For the first integral in Eq.(26), with the substitution of local coordinate  , the detailed 
formulation for q=1 is 
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i (i=1,2,3) are the local coordinates of the collocation points on the element. With a linear 

transformation      , Eq. (28) can be transformed into 
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Then nonlinear transformation m   proposed by Luo et al. [4] can be added to Eq. (30), so that 
it can be calculated using the standard Gaussian quadrature formula. 
 
For MJ  , second Taylor series are essential, and the equation can be separated into three parts as 
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The third part can be evaluated as in Eq. (27), and the second part can also be evaluated by 
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With linear transformation, the first part when 1q   can be transformed into 
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nonlinear transformation can also be applied.  
 
For the cases 2q   and 3q  , the integrals MJ and MJ   can be evaluated in the same way as the 

case 1q  . 
 
For MJ  , with the substitution of  
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it can be changed into 
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which has a similar form to MJ . So it can be evaluated with the advantage of the first 

Taylor-expansion series of q . The formulation is so complicated that it isn’t listed here. 
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4.2. Straight element 
 
For isoparametric quadratic element, the denominators of the nearly singular integrals possess a 
relative high order of  , which brings difficulty for the integration. So the non-isoparametric 
quadratic straight line element is introduced. The boundary quantities are described by the same 
shape functions as the isoparametric quadratic element, while the geometry quantities x  and y  
can be described as 
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in which 1 1( , )x y  and 3 3( , )x y  are respectively the start and end point of the element. With the 

above expressions, 0
M Mz z  can be represented by a linear function of  , 
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Nearly singular integrals can be expressed as 
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As the difference between ML  and ML  is just a coefficient, only Eq. (39) should be evaluated. 

 
Let 1q  , with the substitution of Eq. (38) into 1 , the shape functions can be expressed as 
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where M MA a c  , 0 0( )M MB b x d y    . Therefore ML  can be separated into three parts 

as follows, 
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The three integrals can be evaluated analytically, 
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With similarity of the expressions, the integrals can be evaluated in the same way when 2,3q  . 
 
Similarly, ML  can also be divided into three parts. Two of them can be integrated by Eq. (44), the 

other one can be evaluated as follows, 
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With straight line element applied, the nearly singular integrals can be integrated analytically, and 
the separated parts have simple expressions. 
 
5. Numerical examples 
 
5.1. A central crack in finite plate 
For the first example, a central crack of length 2a in a homogeneous and linear piezoelectric plate is 
considered to verify the correctness of the two methods. As shown in Fig. 1, the plate with width  
2L   height 2H is under a pure uniform mechanical tensile loading of 0 1Mpa  . 

 
Figure 1. A central crack in a piezoelectric plate 

 

Normalized stress intensity factor 0/ ( )IK a   is presented versus L/a of the finite plate, the 

results have been plotted and compared with the corresponding FEM results presented by Cao and 
Kuang [5] to test the accuracy of the present integration methods. Different heights are considered 
with H/a=0.368, 0.568, 0.968 and 4.618. The two methods coincide well with each other, and they 
also match well with the FEM results. It should be pointed out that the FEM results are obtained for 
the condition that the thickness b of the plate is 0.01a. It can be found from Fig.2 that the values of 
SIF are approaching to the stable values when the ratio of L/a is larger than 2.0, which means these 
values reach the case of a central crack in the corresponding strips with the height 2H.  
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Figure 2. Normalized stress intensity factors for different dimensions 
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5.2. A central crack in thin piezoelectric structure 
 
When H decreases to a very small value, the plate becomes piezoelectric film. Since the film is thin, 
the crack length is set to be relatively small. Let L/a=25, 50, normalized stress intensity factor 

0/ ( )IK a   is presented versus H/a which is changing from 1 to 61 10 . When the ratio is as 

small as 10-6, it is sufficient for modeling many thin piezoelectric films as used in smart materials 
and micro-electro-mechanical systems. 
 
With the decrease of H, the stress intensity factor keep increasing when the strip is relatively thick, 
namely H/a is higher than 0.01. But in the interval [0, 0.01], the SIFs become stable. Since the crack 

is small, the value of 0/ ( )IK a   is not so high. For the straight line element method, the stress 

intensity factors at H/a= 61 10  jump slightly. 
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Figure 3. Normalized stress intensity factors versus H/a 

 
Dynamic intensity factors are also taken into consideration. For H/a=0.1, L/a=25, Fig. 3 shows the 
normalized dynamic intensity factors versus dimensionless time tcL/H, where  

 2
22 22 22( / ) /Lc C e    . (46) 

The methods of line element and quadratic element are both used and the results coincide with each 
other very well. 
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Figure 4. Normalized dynamic stress intensity factors versus dimensionless time 
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6. Conclusions 
 
Transient dynamic crack problems in piezoelectric thin structures are considered. Two methods are 
presented to deal with the nearly singular problems in the Laplace domain fundamental solutions. 
The first method for quadratic element is semi-analytical and the second method for straight line 
element is analytical. Static stress intensity factor of a piezoelectric plate is obtained for different 
structural dimensions. The results have been compared with FEM results and the agreement verifies 
the accuracy of the present methods. Then cracks in thin structures are considered, normalized 
intensity factors of both static and dynamic cases are obtained. The results indicate that the two 
methods function well when the ratio of the film thickness to the crack length is as small as 10-6 
which is sufficient for modeling many thin piezoelectric films and coatings.  
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