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Abstract   
 
A three-dimensional multiscale computational framework based on the cohesive finite element method 

(CFEM) is developed to establish relations between microstructure and the fracture toughness of ductile 

polycrystalline materials. This framework provides a means for evaluating fracture toughness through 

explicit simulation of fracture processes involving arbitrary crack paths, including crack-tip microcracking 

and branching. Fracture toughness is computed for heterogeneous microstructures using the J-integral, 

accounting for the effects of grain size, texture, and competing fracture mechanisms. A rate-dependent, finite 

strain, crystal plasticity constitutive model is used to represent the behavior of the bulk material. Cohesive 

elements are embedded both within the grains and along the grain boundaries to resolve material separation 

processes. Initial anisotropy due to crystallographic texture has a strong influence on inelastic crack tip 

deformation and fracture toughness. Parametric studies are performed to study the effect of different 

cohesive model parameters, such as interface strength and cohesive energy, on the competition between 

transgranular and intergranular fracture. The two primary fracture mechanisms are studied in terms of 

microstructure characteristics, constituent properties and deformation behaviors. The methodology is useful 

both for the selection of materials and the design of new materials with tailored properties. 
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1. Introduction 
 
Microstructural design is an important approach for enhancing material properties such as fracture 
toughness for many industries, including aerospace and automotive engineering. It is of great 
importance to quantify how an advancing crack interacts with the microstructure at multiple length 
scales and how microstructure determines a material’s fracture toughness through the activation of 
different fracture mechanisms. A lot of efforts have been made to develop 2D simulation methods to 
study the crack initiation and propagation in brittle materials (cf. Xu and Needleman [1], Zhai et al. 
[2] and Li and Zhou [3, 4]) and metallic polycrystalline materials (cf. Guo et al. [5] and Hao et al. 
[6]). However, fracture is inherently a 3D problem. Most of these 2D models, which assume plane 
strain conditions, cannot capture the 3D morphologies and orientation of grains, nor do they track 
crack-material interactions due to non-planar crack extension. This paper aims at expanding the 
current 2D capabilities to 3D by considering realistic microstructures and incorporating crystalline 
plasticity in constitutive response modeling. Both intergranular and transgranular fracture modes are 
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considered in the cohesive finite element method (CFEM) framework developed. This framework 
also provides a means for evaluating fracture toughness through explicit simulation of 3D fracture 
processes in microstructures by calculating the J-integral.  
 
2. Model structure 
 
Our proposed framework consists of two length scales. At the microscopic scale, 3D cohesive 
elements with 6-node zero thickness (COH3D6) permeate the whole microstructure as an intrinsic 
part of material characterization. Constitutive relations for the grains and grain boundaries are 
specified separately. The cohesive relation allows damage and crack surface separation to be 
considered. Fracture emerges as a natural outcome of the deformation process without the use of 
any failure criterion. The macroscopic region is homogenized by using the Mori-Tanaka method. 

Structural response, such as fracture toughness ICK , is evaluated by calculating the J-integral along 

an arbitrary contour in the homogenized region. 
 
2.1. Generation of 3D polycrystal samples 
 
Voronoi tessellation has been one of the most popular techniques for generating polycrystalline 
microstructures due to its simplicity, space-filling nature and the availability of theoretical results on 
the topological properties [7-8]. However, microstructures generated in this way are not always 
consistent with experimental results [9]. To realistically capture the topological and statistical 
properties of microstructures, a method for generating a 3D polycrystalline microstructure from a 
series of 2D images is developed. This capability extends the source of 2D images from computer 
generated microstructures to realistic section images obtained by Electron Back Scatter Diffraction 
(EBSD) or Focused Ion Beam (FIB) diffraction. In this paper, the 2D microstructure images are 
generated by an ellipsoidal packing algorithm [10]. Ellipsoidal grains are randomly placed with the 
aspect ratios and grain sizes fitted to pre-defined distributions. In order to obtain good delineation of 
grain boundary and potential crack trajectory, unstructured tetrahedral meshes are generated by 
iso2mesh [11] as illustrated in Fig. 1.  
 

 
Fig.1 3D microstructure reconstruction and meshing. 
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2.2. 3D cohesive element insertion 
 
Embedding cohesive surfaces into complicated 3D microstructure meshes is not a trivial task. The 
biggest challenge lies in how to effectively deal with the changes in the 3D nodal and elemental 
connectivities due to the introduction of cohesive surfaces. An algorithm has been developed to 
automatically insert 3D cohesive elements along grain boundaries and within individual grains. The 
method generally includes the following steps: (1). Find the node set which will be duplicated. The 
set can be defined as nodes along grain boundaries or within arbitrary grains. (2). Sort out the target 
elements which include the node set, then duplicate the nodes and redistribute the updated node 
labels to the corresponding elements. Assign the same coordinates to the duplicated nodes as the 
virgin nodes. (3). Generate cohesive elements with consistent nodal ordering (clockwise or 
counter-clockwise) in adjacent element facets. The top and bottom facets are determined by 
calculating the surface normal. Either top or bottom face can be defined by a positive surface 
normal value. The key lies in keeping the pattern consistent. (4). Create different cohesive element 
sets. Sort out cohesive elements that belong to grains or grain boundaries so that different cohesive 
laws can be correctly assigned.  

 

 

 
Fig.2 Bilinear traction-separation law. 

 
Both cohesive elements along grain boundaries and within grains follow the bilinear 
traction-separation law as shown in Fig. 2. This law is derived from a potential   which is a 

function of separation vector   through a state variable defined as    2 2

n nc t tc       . 

This variable describes the effective instantaneous state of mixed-mode separations. Here, 

n  n Δ  and          2 22 2

t p q
                 = Δ Δ n n p Δ Δ n n q =

   Δ Δ n n  denote, respectively, the normal and tangential components of Δ , with n  being 

unit normal and p  and q  being two unit tangential vectors. Note that n , p  and q  are 

mutually perpendicular to each other and form a right-handed triad.  nc  is the critical normal 

separation at which the cohesive strength of an interface vanishes under conditions of pure normal 
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deformation ( 0t  ). Similarly, tc  is the critical tangential separation at which the cohesive 

strength of an interface vanishes under conditions of pure shear deformation ( 0n  ). maxT  

represents the maximum traction that the cohesive element can sustain before damage initiates.  
 

 
 

Fig.3 Effect of mesh tie constraint on the calculated J values. 
 

2.3. Generation of mesh tie constraint 
 
Calculation of the J-integral in the homogenized region requires a closed contour. It would very 
difficult to define contours if the homogenized region is meshed with unstructured elements. To 
solve the problem, two regions of mesh are used. An unstructured tetrahedral mesh is used for the 
microstructure region and a structured tetrahedral mesh is used for the homogenized region. It 
would be extremely challenging to create a transitional region that connects the two types of meshes. 
Instead, the mesh tie constraint in ABAQUS is used. This constraint requires no conformity of node 
connection between the two regions. It circumvents the problem with acceptable accuracy. As 
illustrated for a 2D problem in Fig. 3, there is only a very minor difference between the J values for 
cases with and without the mesh tie constraint. It should be noted that iso2mesh cannot generate 
perfect microstructure meshes with smooth exterior surfaces and sharp vertices as shown in Fig. 4. 
If the two regions cannot be seamlessly attached, the energy loss caused by the gap will 
significantly influence the accuracy of calculation. We innovatively develop an algorithm to 
generate a shell mesh which is around the unsmoothed microstructure block to ensure proper node 
and element connectivity. The two regions are successfully assembled using the mesh tie constraint 
as illustrated in Fig. 5.  
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2.4. Crystal plasticity formulation 
 
Plastic deformation at the macroscopic scale in metals is a manifestation of dislocation motion and 
interaction at the microscopic scale. The details are intimately related to the basic crystallographic 
nature of the material as well as the current state of the microstructure. Macroscopic models of 
plasticity lack the ability to link these fundamental mechanisms to the bulk material response 
without very substantial experimental characterization. Furthermore, these models give relatively 
little physical connection between the actual deformation processes and the observed material 
behavior. Many formulations of constitutive laws for the elastic-plastic deformation of single and 
polycrystals have long been proposed (cf. Talor [12], Hill and Rice [13], Asaro and Rice [14], Peire 
et al. [15] and McGinty and McDowell [16]). The basic premise of these theories is that 
macroscopic plastic deformation is related to the cumulative process of slip (or twin) system 
shearing relative to the lattice. This methodology provides a physical link between the processes at 
radically different length scales. The two basic components of crystal plasticity model are the 
kinematic and kinetic relations. The kinematic relations provide the mathematical framework for 
describing the physical process of dislocation motion based on continuum deformation fields, 
whereas the kinetic relations incorporate the material and/or mechanism dependence of 
non-equilibrium dislocation motion and interaction. 
 

 
 

Fig. 4 Shell mesh region around the unsmoothed microstructure mesh. 
 

The multiplicative decomposition of the total deformation gradient is given by 
 

 e p F F F ,  (1) 

 

where eF  is the elastic deformation gradient representing the elastic stretch and rotation of lattice, 
and pF  is the plastic deformation gradient describing the collective effects of dislocation motion 

along the active slip planes relative to a fixed lattice in the reference configuration. Unit vectors 0
s  
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and 0
n  denote the slip direction and the slip plane normal direction, respectively for the th  slip 

system in the undeformed configuration. The resolved shear stress on each slip system is related to 
the Cauchy stress tensor σ  according to  
 

   ,    σ: s n  (2) 

 
where the slip vectors have been rotated into the current configuration. Under the application of the 

resolved shear stress, the shearing rates   on the slip systems are related to the plastic velocity 

gradient in the intermediate configuration according to  
 

 0 0 ,p   



 L s n  (3) 

 

with   ascribed to follow the rate-dependent flow rule as 

 

  0 sgn ,
m

g

 
  



    
    (4) 

 

where m  is the reverse strain rate sensitivity exponent and g  and   are drag stress and back 

stress, respectively on the th  slip system.  These quantities evolve according to  
 

 1
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.kin dyn

g H q
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 (5) 

 

Here q  is the latent hardening coefficient, H , kinA  and dynA  are the isotropic hardening, 

kinematic hardening and dynamic recovery coefficients, respectively. These non-linear coupled 
differential equations are solved via the fourth order Runge-Kutta integration scheme using 
VUMAT. 
 
3. Conclusion 
 
A cohesive finite element based multi-scale framework is developed to simulate crack initiation and 
propagation in 3D polycrystalline microstructures. Crystal plasticity is incorporated into the 
constitutive relations so as to capture how anisotropic deformation and texture evolution affect 
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crack propagation and the activation of different fracture mechanisms. The methodology is useful 
both for the selection of materials and the design of new materials with tailored properties. 
 

 

Fig. 5 Model assembly between microstructure and homogenized region by mesh tie. 
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