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Abstract This paper addresses finite element evaluation of the non-singular T-stress in nonhomogeneous 
materials under steady-state thermal loads by means of interaction energy integral method. The interaction 
energy integral method developed in this paper can solve the T-stress with high accuracy and efficiently in 
nonhomogeneous materials. The interaction energy integral method in conjunction with the extended FEM is 
used to solve several representative examples to show its validity. It can be found that the present method is 
efficiency to calculate the T-stress in nonhomogeneous materials.  
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1. Introduction 
 
Stress intensity factors (SIFs) play a significant role in linear elastic fracture mechanics as they 
characterize the crack-tip stress and strain fields. Apart from the SIFs, the T-stress [1], which is the 
nonsingular term, has become another key parameter in fracture mechanics because it has been 
found the T-stress affects the crack growth direction, shape and size of the plastic zone, crack-tip 
constraint and fracture toughness greatly [2-4].  
Many researchers evaluated T-stress when the material is subject to mechanic loading [5-8], 
however, there are few researches on T-stress when the material is subject to thermal loading. 
Sladek and Sladek [9] used the conservation integral method to evaluate the T-stress and the stress 
intensity factors in stationary thermoelasticity. Dag [10] used J integral to evaluate the mix-mode 
SIFs and the T-stress in FGMs under thermal loading. KC and Kim [11] and Kim and KC [12] have 
studied the SIFs and T-stress in FGMs under thermal loading using the interaction energy integral 
method. However, all of the above paper did not consider the situation that the materials contain 
interfaces. 
 
2. Interaction energy integral formulation 
 
The traditional J-integral given by Rice [13] is  

00
1 ,10

lim ( )j ij i jJ u n dδ σ
ΓΓ →

= − Γ∫ W                           (1) 

where W  is the strain energy density given by 

1 1 ( )
2 2

m t th
ij ij ij ij ijσ ε σ ε ε= = −W                            (2) 

and jn  is the outward normal vector to the contour 0Γ , as shown in Fig. 1, and ijδ  is the 

Kronecker delta. In Eq. (2), m
ijε  is the mechanical strain, t

ijε  denotes the total strain, th
ij ijε α θδ= Δ  

refers to thermal strain, α  represents the thermal expansion coefficient and 0θ θ θΔ = −  denotes 
temperature change with 0θ  is the initial temperature. 
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Fig. 1. Schematic illustration of the contour integrals and domain integrals. 
 
The J-integral can be deduced to an equivalent domain integral (EDI) by using the divergence 
theorem, that is 

,1 1 , ,1 1 ,( ) ( )ij i j j ij i j jA A
J u qdA u q dAσ δ σ δ= − + −∫ ∫W W                  (3) 

In the interaction energy integral method, the auxiliary fields, including displacements ( auxu ), 
strains ( auxε ), and stresses ( auxσ ) are used. These auxiliary fields need to be suitably defined in 
order to evaluate T-stress and TSIFs in nonhomogeneous materials. Here we adopt analytical fields 
originally developed for homogeneous materials and the “incompatible formulation” is chosen in 
this paper [14]. 
As shown in Fig.1, there is a point force F applied to the crack tip in an infinite plane. The auxiliary 
displacement fields and the auxiliary stress fields for T-stress are chosen as follows [11, 12], 
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where d is the coordinate of a fixed point on the 1x  axis, tipμ  is the shear modulus evaluated at 
the crack-tip, and 
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(plane stress)

1

3- 4 (plane strain)

tip

tiptip

tip

ν
νκ
ν

⎧
⎪ += ⎨
⎪
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                          (6) 

And the auxiliary strain fields ( )aux aux
ij ijkl klSε σ= x , which is incompatible with the auxiliary 

displacement fields [15]. Since ijklS  is the compliance tensor of the actual materials, not the 

compliance tensor of the crack tip, it can be got that: , ,( ) / 2aux
ij i j j iu uε ≠ + .  

Superposition of the actual and auxiliary fields leads to a new equilibrium state. 
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The interactional part is called interaction energy integral [14]. Here, it can be derived as 
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, 1 , 1 ,1 ,1
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ij i ij i ik ik j jA

aux aux aux m aux m
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                 (8) 

According to the relationship of the displacement and strain in elastic mechanics, one may write 

, 1 , 1 , 1 ,1 ,1 ,1
1 ( ) ( )
2

aux aux aux t aux m th
ij i j ij i j j i ij ij ij ij iju u uσ σ σ ε σ ε ε= + = = +               (9) 

The second integral can be obtained as 

, 1 , 1 ,1 ,1 , 1 ,1 ,1( ) ( )aux aux aux m aux m aux aux m aux th
ij i j ij i j ij ij ij ij ij i j ij ij ij ijA A

u u qdA u qdAσ σ σ ε σ ε σ σ ε σ ε+ − − = − +∫ ∫      (10) 

If the extra strain field 0aux tip aux
ij ijkl klSε σ=  is introduced, we can get the formulation 

0
, ,

1 ( )
2

aux aux aux
ij i j j iu uε = + , Here tip

ijklS  is a compliance tensor at the crack tip [15]. Thus, the interaction 

energy integral can be written as 
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where 

,1 ,1 0 ,1( ) [ ( ) ]th aux th aux
ij ij iiA A

I qdA qdAσ ε σ α θ θ αθ= = − +∫ ∫               (12) 

In the above derivation process, the domain of the integral is chosen arbitrarily around the crack-tip, 
so the interaction energy integral for thermal fracture problems is domain-independent. 
 
3. Evaluation of the T-stress from the interaction energy integral 
 
The contour integral around the crack tip can be written as 

00
1 ,1 ,10

lim ( )aux aux aux
ik ik j ij i ij i jI u u n dσ ε δ σ σ

ΓΓ →
= − − Γ∫Ñ                  (13) 

Here we can consider only the stress parallel to the crack direction, i.e. 
1 1ij i jTσ δ δ=                                 (14) 

Where T  denotes the T-stress. The force f is in equilibrium can be expressed as 

00 0
lim aux

ij jf n dσ
ΓΓ →

= − Γ∫Ñ                            (15) 

We can also obtain the following relationship from the kinematic equations 
,1 11 1 11 11 1( )t m th

i i iu ε δ ε ε δ= = +                           (16) 
It can be rewritten as  

11
,1 1( + )i iu C

E
σ α θ δ∗= Δ                             (17) 

where * 1C =  for generalized plane stress and * 1 ( )C xν= +  for plane strain. Substituting Eq. (14) 
and Eq.(17) into the contour integral, one obtains 
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ij j tip tip tip
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= − Δ Γ = Δ ⋅∫Ñ          (18) 
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Then we can get 
* * *
tip tip tip tip tip
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             (20) 

So, the T-stress can be evaluated easily if we can obtain the interaction energy integral I . As Yu et 
al. [15] proved, the equivalent domain integral is not referred to in the above analysis and as a result, 
both the domain size and the material properties in the integral domain are not limited for the 
equivalent domain integral. 
 
4. Numerical examples and discussions 
 
To test the validity of the method developed in the above section, two crack problems in 
nonhomogeneous materials are considered. 
 
Example 1: An edge crack in a homogeneous plate. 
 
An edge crack of length ‘‘a’’ is located in a homogeneous plate which subjected to steady-state 
thermal loading. The temperature boundary of the example is assumed to be 1 0 0 Cθ θ= = °  and 

2 1 Cθ = ° . This problem have been studied by Sladek and Sladek [9] and KC and Kim [11]. The 
following data are used for the numerical analysis: 

/ 4L W = , / 0.1 ~ 0.8a W = , 0.3ν = , 5( ) 1.0 10E x = × , 5( ) 1.67 10xα −= × , 1λ =  
Tables 1 present the mode-I TSIFs and the T-stress for various crack lengths. The T-stress obtained 
is in good agreement with those reported in Sladek and Sladek [9]. 

Table 1 Comparison of the mode-I TSIF and T-stress in homogeneous materials under thermal loading 
(Example 1) 

Sladek and Sladek’s results Present results 
/a W  

1K  T-stress 1K  T-stress 

0.1 0.6454 -0.4317 0.6432 -0.4198 
0.2 0.776 -0.2179 0.7756 -0.2196 
0.3 0.7951 -0.0314 0.7953 -0.0322 
0.4 0.7527 0.1463 0.753 0.1489 
0.5 0.6705 0.3258 0.6708 0.3295 
0.6 0.5601 0.5075 0.5605 0.5142 
0.7 0.4288 0.698 0.4291 0.7064 
0.8 0.2825 0.896 0.2828 0.9095 

 
Example 2: An edge crack in a FGMs plate. 
 
In this example, an edge crack problem in a FGMs plate is studied. The material properties, Young’s 
modulus and thermal expansion coefficient are exponential functions of x , while Poisson’s ratio is 
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constant. The temperature boundary of the example is assumed to be 1 2 00.5θ θ θ= =  and 

0 10 Cθ = ° . 
The following data are used in the FEM analyses: 

/ 8L W = , / 0.5a W = , 1( )
x

WE x E e
δ

= × , 1( )
x

Wx e
γ

α α= × , 1( )
x

Wx e
β

λ λ= × , 2

1

ln( )E
E

δ = , 

2

1

ln( )αγ
α

= , 2

1

ln( )λβ
λ

= ， 

1 1.0E = , 2 5E = , 1 0.01α = , 2 0.02α = , 1 1λ = , 2 10λ = , 0.3ν =  
Different element numbers W LN N×  ( 81 648× , 101 808×  and 121 968× ) for two different 
temperature conditions are chosen. The results are shown in Table 2. It can be seen that the present 
results agree well with the solutions provided by KC and Kim [11]. From these two examples, the 
convergence and the accuracy of the present method are verified. 

Table 2 Comparison of the mode-I TSIF and T-stress in FGMs for different thermal loading  
(Example 2) 

Present results KC and Kim’s results 
Loading condition Element numbers 

1 0/K K  T-stress 1 0/K K  T-stress 
3D 

T-stress 
81 648×  0.0023 0.00589

101 808×  0.0023 0.005921 00.5T T=  
121 968×  0.0023 0.00594

0.0229 0.0067 0.006 

81 648×  0.00438 0.01118
101 808×  0.00438 0.011241 00.05T T=  
121 968×  0.00438 0.01129

0.00437 0.0126 0.0115 

 
5. Conclusions 
 
In this paper, a modified interaction energy integral for thermal loading condition is derived for the 
T-stress computations. The interaction energy integral is proved to be domain-independent for 
thermal conditions. It can be found that the numerical results are in good agreement with those in 
published papers. The present method is effective to analyze the thermal fracture problems of 
nonhomogeneous materials. 
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