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Abstract. In this paper, we present a modeling of planar structures under dynamic loading containing 
stationary cracks in order to determine the dynamic stress intensity factor (DSIF). This parameter will be 
evaluated by using the eXtended Finite Element Method (XFEM) coupled with the interaction integral 
technique. Some examples of validation of the computer code developed in this work were tested. The good 
correlation of the obtained results in fatigue with the literature proves the effectiveness of the method as well 
as the developed computer code. In the dynamic case, a parametric study on the presence, position and size 
of the void with respect to the crack and also on the crack type (crack edge and central crack) was conducted 
for some practical applications. 
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1. Introduction and stat of the art 

In the cracking of fragile and quasi-fragile structures containing voids (holes) and subjected to 
quasi-static and dynamics loadings, the characterized parameter is the Stress Intensity Factor (SIF).  
Many techniques have been used in literature to evaluate this parameter. Among which we mention 
the finite element method FEM [1], the boundary element method BEM [2], the finite difference 
method FDM [3], and the symmetric-Galerkin boundary element method SGBEM [4]. We note that 
the FEM is the most popular for its flexibility and efficiency. However, it requires a special 
treatment of discontinuities and singularities of fields due to the presence of the crack. For this 
purpose, a new FEM approach has been developed by Belytschko and Black [5] named 
eXtended Finite Element Method (XFEM). It consists to take into account the discontinuity at the 
crack edges and the singularity at the crack tip by enrichment of neighboring nodes with new 
degrees of freedom via the new shape functions associated with elements containing these nodes. 
Among the first who addressed the problem of voids by using XFEM in static are Sukumar and 
Chopp [9], by introducing a new enrichments for voids. Recently, J M Pais [10] has treated voids 
problem using XFEM but limited on static and quasi-static loadings.  
 
In this context, this work seeks to model the behavior of structures containing simultaneously voids 
and stationary cracks and subjected to different types of loads (fatigue loads and dynamic Heaviside 
step loading). The SIF will be evaluated using a global approach; based on the J integral. Also, in 
this work, we will test the effect of size and position of the void. The obtained results will be 
compared with other works in literature.  
 
2. XEFM formulation 

The XFEM introduces in the approximation of the displacement field three types of enrichments [5]: 
-A discontinuous function H (Heaviside function) that enriches the split nodes (Fig. 1): 
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Where  is the level set function that determines the normal position of node (x) from the crack. 
-Four (04) singular functions for each tip node (Fig. 1): 
    (2)
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-For void nodes, we add the following enrichment [9]: 
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Where  is the level set function of voids 
The approximate displacement fields are as follows: 
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In addition to traditional unknown ui, we consider the unknowns ai and bk corresponding to the 
enrichment functions H et Fk, respectively. 
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Fig. 1 Types of XFEM enrichments of the meshed domain. 

 
3. Interaction integral method for SIF computation 

There are several methods to evaluate the SIF. In this work we use the J integral method by using 
the interaction integral (Fig.2). Because its global character, this method is the most stable 
technique.  

 

 
Fig.2 Method of SIF computing: interaction integral technique. 

 
This method introduced by Sih et al [8], combines with the actual field an auxiliary field satisfying 
the boundary conditions of the problem. In this case, The J integral is given as follows: 
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Where actJ , auxJ  are the J integrals in the actual and auxiliary fields, respectively, and M  is the 

interaction integral that we are interested in, defined by : 
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MW    is the strain energy of interaction and EE ' in plane stress and 

)1/( 2' EE  in plane strain. Therefore, the stress intensity factor in mode I and II take the form: 
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We take 0,1  aux

II
aux
I KK  in mode I and 1,0  aux

II
aux
I KK  in mode II. The computing procedure 

of M is based on the Gauss points within the elements of J domain area A (see Fig 2). 
  

4. Fatigue application   

We validate the computer software carried out in this study and based on the above developments, 
in quasi-static (fatigue) loading, we consider a plate (Fig. 3) of size mmmmlL 6512022   with an 
edge crack of length a2 , with mma 10 , and 3 holes (one is of diameter 20 mm and the two others 
for the load action are both of 13 mm). The material properties are Pa107.71 9E , 3.0 .  The 
stress state is plane strain with a mesh of 60x120 elements. The plate is under uniaxial fatigue load 
with a variation of KNp 20  with 12 increments of da=3 mm. 
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Fig.3 the considered validation: (a) Cracked plate containing voids,(b) results using XFEM, (c) experimental 

results [11]   
 
In this case, the crack growth path is followed and compared with that obtained by Giner et al. [11], 
the results are regrouped in Fig 3. The obtained results as shown in Fig 3b are approximately close 
to the experimental ones Fig 3c proved so the accuracy of this approach.  
 
 

5. Dynamic applications 

For dynamic loads, we are limited to present our results only. 

 

 



5.1. Plate with edge crack  

We consider a reference problem of a plate (Fig. 5.a) of size mmmmlL 30040022   with an 
edge crack of length a2 , with . The material properties are Pa101.2 11E , 3.0  and

33220Kg/m .  With plane strain state and a mesh of 60x120 elements. The plate is under 

uniaxial dynamic tensile ),( 0 ty  of Heaviside step load (Fig. 4.b) with Pa1020 6
0  , 

We’re going to evaluate the no normalised SIF I adK  at the crack tip and the maximum of y 

component of normalised stress ad on A point situated at the nearest node to the crack tip defined 

as: 

                                     0/ ( )I ad IK K a                                                                         (8)            

                                                    0/ad yy                                                                               (9) 

Curves on Fig 4.c were found with sliding the void horizontally with a step of (1/7)a. These Figures 
represent the variation of I adK and ad  versus the relative position x/2w.    
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Fig.4 (a) considered geometries, (b). Dynamic load Heaviside (c) SIF and maximum stress 

Fig 4c shows that both I adK and ad  decreases with the distance of the hole to the crack tip; it is like 

the crack length decreases. The SIF continues to decline up then vanishes when the hole reached the 
crack tip. That is why holes at the crack tips are considered a very practical solution to stop their 
growth. 

5.2. Plate with central crack  

We reanalysis the precedent example but with a central crack crossed by a hole of a diameter 
varying from 2a/10 to 2a/1.1 as shown in Fig 4a. 

In this example, we are going to evaluate the dimensionless SIF given in relation (8) for different 
diameters of hole to verify its role to increase the cracking plate resistance. Effectively, from the 
curves in Figure 5.b, the hole more and more bigger extinct more and more the SIF and therefore 
the risk of crack growth. 
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Fig.5 (a) considered geometries, (b). DSIF for different sizes of hole 

 
6. Conclusion 
 
This study presents a computational procedure to evaluate the SIF for cracked structures with void 
using XFEM. The correlation of the obtained results with the literature for the fatigue application 
demonstrates the effectiveness of this procedure. The obtained results of dynamic applications agree 
very well with the attended physical results which approve so the robustness of our approach. As 
perspectives of this study the present approach can be extended to problems of multi-voids and 
dynamic crack propagation.  
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