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Abstract Sequential coupling scheme is a flexible numerical scheme to solve a coupled hydro-mechanical 
system. However, it suffers from severe numerical instability. Stability analysis of a sequential coupling 
scheme is performed in this paper. It is derived that the numerical scheme can be unconditionally stable with 
a stabilization term introduced to the fluid equation, while it is only conditionally stable without the 
stabilization. Reproducing Kernel Particle Method (RKPM) is used for spatial discretization. One 
dimensional consolidation in an elastic medium is conducted to verify the sequential scheme, and the 
convergence behavior during the iterations is presented. 
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1. Introduction 
 
Sequential coupling scheme has been extensively studied in the past decades to solve the coupled 
hydro-mechanical system (e.g. [1-4]). It has great advantage over the traditional fully-coupled 
numerical scheme due to its modularity such that the fluid and the mechanical solver for 
corresponding governing equations can be executed separately without many extra manipulations. 
The coupling effect is fulfilled through the information exchange between two solvers. Modularity 
is particularly advantageous in practical applications. However, the convenience does not come 
without any price. The numerical stability and convergence is one problem frequently encountered 
using the sequential scheme. As has been demonstrated in literatures, different sequential algorithms 
require different stability conditions [4].  
One part of this work is to seek a stable sequential couplings scheme. It is worth pointing out that 
the current study only focuses on the stability and convergence problem in the temporal space. To 
achieve this goal, a stabilization term is introduced to the fluid equation. Using the conventional 
stability analysis, it is found that the scheme can be unconditionally stable with a suitably chosen 
relaxation parameter. Another part of the work is to employ one type of meshfree methods, 
Reproducing Kernel Particle Method (RKPM), for spatial discretization. Due to their high order 
interpolations and mesh-free nature, meshfree methods are generally considered to have advantage 
in handling problems with large strains or strain localization. These features are not demonstrated in 
this paper as the emphasis is more on the formulation and stability of the sequential scheme. 
However, the numerical results do suggest the applicability of RKPM to the coupling scheme 
developed. More interesting features of RKPM may show up if nonlinear constitutive models are 
used and more complicated boundary value problems considered.  
This paper is arranged as follows: Governing equations for the hydro-mechanical system are 
presented first, followed by the spatial discretization by RKPM and algorithm of sequential scheme. 
Stability analysis of the numerical scheme is presented subsequently. Numerical simulations for 
verification of the stability conditions are then demonstrated. 
Throughout the paper, letter in bold face denotes tensor or vector. ,() i denotes partial derivative with 

respect to coordinate. A superscript dot over a variable 
.

()  denotes the time derivative of that 

variable. ij  is the Kronecker delta tensor. 
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2. Governing Equations 
 
The coupled formulation of fully saturated porous media used in this work is so-called pu  
formulation, in which the displacement of solid u  and pore fluid pressure p  are treated as two 
primary unknown variables [5]. The governing equations are derived from the equation of 
momentum equilibrium of solid-fluid mixture and equation of mass conservation of fluid as 
follows: 

 ,( ) 0ij ij j i iup b         (1) 

  , ,
( ) 0ij j f j iii

f

bk
np

p
K

     


  (2) 

where ij  is the effective stress tensor, which is related to the total stress ij and pore fluid pressure 

p  via ij ij ijp     . The effective stress in tension and pressure in compression are assigned with 

positive sign.  and f are the mass densities of the mixture and fluid, respectively. ib  is unit 

body force, ijk is permeability tensor, which has a dimension of 3[length] [time] / [mass] and is 

related to the conventional permeability 'k (dimension: [length] / [time]) by / fk k g ; ij is the 

strain tensor; n  is the porosity; fK is the bulk modulus of the fluid. It should be noted that the 

governing equations presented here are simplified from [5] with the assumption that solid grains are 
incompressible. 
The effective stress ij   can be calculated from the constitutive relationship in rate form as follows: 

 ij ijkl klC     (3) 

where ijklC is the tangent modulus of the solid and ij is strain tensor. 

The solid-fluid behaviors are coupled in that changing pore pressure influences the mechanical 
equilibrium state of the mixture, and the volumetric strain rate of the mixture affects the mass 
balance of the fluid. While the coupling problem can be approximated and solved in a decoupled 
manner in some special cases, the coupling effect is an important for a strongly coupled 
hydro-mechanical system and it cannot be neglected. 
 
3. Spatial Discretization with RKPM 
 
Denote uN and pN as the shape functions for displacement u and pore water pressure p , 
respectively. The semi-discrete form of the governing equations (1) and (2) can be obtained by 

multiplying the governing equations (1) and (2) by  TuN and  TpN respectively, followed by 

integration by part: 

 0u   Mu Ku Qp f  (4) 

 0T p   Q u Hp Sp f  (5) 

where 
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( ) (mass matrix); (stiffness matrix)

( ) ( ) (external forces )

(coupling matrix); ( ) (permeability matrix);

( ) (compressibility

t

u T u T

u u T u T
t

T p p T p

p T p

f

d d

d d

d d

n
d

K




 

 

 



   

   

     

 

 
 
 



M N N K B CB

f N t N b

Q B mN H N k N

S N N  matrix); ( )( ) ( )
w

p T p p T
f wd qd

 
    f N k b N

 

and [1 1 1 0 0 0]Tm , B is strain-displacement matrix (the spatial derivatives of the shape 

functions). The boundary conditions are u u  on displacement boundary u and t t on 

traction boundary t , p p  on pressure boundary p  and ( )T
fq q     n k p b on flux 

boundary w . The total boundary   u t p w       . Proper initial boundary conditions 

should also be given for the numerical simulation to start off. 
RKPM shape functions ([6,7]) are used in this study. The RKPM shape functions interpolate the 
solution over discrete nodes, which, unlike the conventional FEM, have no topological connectivity 
relationship. Here only the formulation of shape functions and essential boundary imposition are 
briefly introduced. Readers may refer to [6-8] for the detailed formulations and implementations.  
Function ( )u x  in the domain can be approximated by the following formulation 

 ( ) ( ) ( ; )u u K dV


  ñx x x x  (6) 

where ( )u x  are the values of field variables at particles. ( ; )K  ñx x  is the compactly-supported 
kernel function formulated in RKPM as multiplication of a correction function ( , )C x x and a  
window function ( ) x x , i.e., ( ) ( , ) ( )K C   x x x x x x . The correction function ( , )C x x  is 
assumed to be linear with respect to ( )x x . The window function may take the form of a cubic 
spline or Gaussian function and has a rectangular or circular support in 2D case. Accordingly, the 
displacement can be interpolated as 

 
1

( ) ( )
NP

h
J J

J

u N u


x x  (7) 

where the reproducing kernel approximant (shape function) ( )JN x  is given by 

 ( ) ( , ) ( )J J J JN C V   x x x x x  (8) 

Jx  and JV are the position and contributing volume of the Jth  node, respectively. The RKPM 

shape function does not possess Kronecker delta property, i.e. ( )h
I Iu ux . Therefore, special 

treatment is required to impose the essential boundary conditions. In this paper, the essential 
boundary condition is reinforced by transformation method ([7]). 
 
4. Sequential Coupling Scheme 
 
There are numerous sequential coupling schemes with varied degrees of success in stability ([4]). 
This study introduces a simple stabilization term by considering the difference of pore fluid 
pressures between successive iterations. Rewrite the mechanics solver and fluid solver as follows:  

       Mechanics  Solver : (i+1,k+1) (i+1,k ) (i+1,k) (i+1,k ) (i+1,k ) (i+1) u
n+1 n+1 n+1 n+1 n+1 n+1 n+1+ + =0  M C u K u Qp fu  (9) 
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 Fluid  Solver :       (i+1) (i+1) (i) T (i) p
f n+1 n+1 n+1 n+1 n n n+1 ft + + + t =0     H S p S p p Q u u Sp f   (10) 

In the above equations, subscripts n  and 1n   represent the real time nt  and 1nt  , respectively, 

1f n nt t t    is the time increment. np  and nu  are solutions of pressure and displacement at nt . 

The displacement rate in Eq.(5) is approximated as 
( )

1
1

i
n n

n
ft










u u
u . During the iterations within 

one step, the fluid solver and mechanics solver are executed sequentially, with iteration numbers 
denoted by superscripts i , 1i  (e.g., ( )

1
i

np , ( 1) ( 1,*)
1 1,i i

n n
 
 p u ). The flow solver solves the pressure at 

once implicitly, while the mechanics solver solves the displacement explicitly through iterations, 
denoted by superscripts k , 1k  ... (e.g. ( 1, )

1
i k

n

u , ( 1, 1)

1
i k

n
 
u ).  

The boxed term in the flow solver is added to stabilize the system. S  is an introduced parameter 
which will be determined in order to satisfy the numerical stability requirement and to achieve an 
optimal convergence rate. The stabilization term is essentially a term related to the variation of 
pressure increment during successive iterations, which vanishes when ( 1) ( )

1 1
i i

n n

 p p  and a 

consistent solution of displacement and pore water pressure is consequently achieved. Without the 
stabilization term, the solution of Eq. (10) (i.e. ( 1)

1
i

n

p ) may be unstable or even unattainable, as will 

be demonstrated by stability analysis in Section 5.  
The sequence of solver calling varies in different schemes ([4]). The sequential scheme in this study 
first updates the pore water pressure by calling the flow solver, and then updates the displacement 
using the mechanical solver. Nested numerical iterations (denoted using subscript n  and 
superscripts i , k ) are required to solve the system. The general procedure is listed as the 
following.  

(1).   Initialization at the start of time: 0 inip p , 0 iniu u . 

(2).   Start time integration n = 0  

(a) Initialization (0)
1n n p p , (0)

1n n u u , update 1
u
nf  and 1

p
nf . 

(b) Start iteration scheme i = 0 . 
i. Call flow solver to solve for ( 1)

1
i

n

p : 

      1
(i+1) (i) T (i) p
n+1 f n+1 n+1 n n n+1 f= t + - t


      p H S S Sp Q u u Sp f  

ii. Call mechanics solver using predictor-corrector integration method. k starts from 0 . 
(1,0)

1n n u u . 

A. Compute the predictors:  

 
2

( 1, 1) ( 1, ) ( 1, ) ( 1, )
1 1 1 1

( 1, 1) ( 1, ) ( 1, )
1 1 1

( )
1 2

2

(1 )

i k i k i k i k
n n n n

i k i k i k
n n n

t
t

t





    
   

   
  


    

   

u u v

u

u

v v

 

 

   

t =10-5 s (pseudo-time step) 

B. Update �  ( 1, 1) ( 1, 1)
1 1

i k T s i k
n n d
   
 

   K B C u B  for nonlinear materials.  

C. Compute � ( 1, 1)( 1, 1) 1 ( 1) ( 1, 1) ( 1, 1)
11 1 1 1 1

i ki k i u i k i k
nn n n n n

        
          M Q f Cv K uu p   

D. Compute the correctors: 
( 1, 1) ( 1, 1) 2 ( 1, 1)

1 1 1

( 1, 1) ( 1, 1) ( 1, 1)
1 1 1

( )i k i k i k
n n n

i k i k i k
n n n

t

t





     
  

     
  

  

  

u u u

v v u

 

 
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E. Check whether unbal
unbal

tot

TOL
F

F

‖ ‖

‖ ‖
.  

   If NO , 1k k   and go to (2)(b) iiA. 
F. End mechanics solver. Commit ( 1) ( 1, 1)

1 1
i i k

n n
  
 u u . 

iii. Check whether both the solutions ( 1)
1

i
n

p and ( 1)

1
i

n

u  satisfy the convergence criteria, i.e. 

( 1) ( ) ( 1)
1 1 1

i i i
n n n pTOL 
   p p p  and ( 1) ( ) ( 1)

1 1 1
i i i

n n n uTOL 
   u u u .  If NO, 1i i  , and 

go to (2)(b)i. 
iv.  End iteration scheme. 

(c) Update p  and u : ( 1)
1 1

i
n n


 p p  and ( 1)

1 1
i

n n


 u u . 

(d) If n < total time step, 1n n  , and go to (2)(a). 
(3).  End time integration. 

 
where v u is the velocity vector, unbalF is the unbalanced force, totF is the total applied force. 

, ,unbal p uTOL TOL TOL  are tolerance for the unbalance force, pore water pressure variation and 

displacement variation, respectively.   and   are the two numerical parameters for the 

integration method. In the simulations presented in this paper, 0.25, 0.5   are used. �C  is 

taken as the conventional Rayleigh damping given by � a b C M K . 
As mentioned before, the mechanics and fluid solvers may employ different solution schemes. In 
the scheme proposed, the fluid solver is formulated using implicit integration for pressure, while 
mechanics solver solves displacement explicitly. The reason for this is that fluid solver is generally 
‘more’ linear and can be efficiently solved while highly nonlinear constitutive model may be used in 
the mechanics solver which makes the implicit method much more difficult. Besides, in the 
mechanics solver, the mass matrix in step (2)(b)iiC can be approximated as a diagonally-lumped 
mass matrix, inversion of which can be readily obtained. The computation cost would be 
significantly reduced, especially for large-scale boundary value problems, where a large number of 
degrees of freedom are inevitably involved. 
 
5. Stability Analysis 
 
Based on the sequential scheme described in Section 4, the stability analysis on three levels needs to 
be inspected, i.e. stability of individual solvers, stability of iterations within one step (i.e. 1k k  , 
called iteration stability hereafter), stability during time marching (i.e. 1n n  , called staggered 
stability hereafter). It should be noted that stability of the former is only a necessary but not 
sufficient condition for the stability of the latter. Stable individual solvers does not guarantee the 
stability of iterations between these solvers, nor does a stable pair of solutions at one step guarantee 
stable solutions during the time marching. A stable iterative scheme requires numerical stability on 
all the three levels. In this work, the stability analysis of iterations during one step is approached in 
two ways, one by perturbation theory [9] and the other by error propagation [10]. Detailed analysis 
is presented as follows.  
 
5.1 Stability of Individual Solvers  
 
As shown in Section 4, the equation of momentum equilibrium is solved explicitly. As proved in 

[16], with Rayleigh damping used and 
1

2 4

   , the mechanics solver is unconditionally stable. 

The fluid solver with implicit time difference scheme is called once during every iteration, therefore 
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there is no need to test the stability of flow solver in this level. 
 
5.2 Iteration stability 
 
The iteration stability analysis is approached both by perturbation theory and error propagation 
method. The formulations with and without stabilization term are both derived to study the effect of 
stabilization term.  
 
5.2.1 Perturbation theory 
 
Assume a stable pair of solutions (u and p ) is given during each iteration by the two solvers.  The 
fluid equations at two successive iterations 1i   and i  are given by  

      ( 1) ( 1) ( ) ( )
1 1 1 1 1 0i i i T i p

f n n n n n n n ft t 
             H S p S p p Q u u Sp f  (11) 

      ( ) ( ) ( 1) ( 1)
1 1 1 1 1 0i i i T i p

f n n n n n n n ft t 
             H S p S p p Q u u Sp f  (12) 

Subtracting (12) from (11), it yields 

       ( 1) ( ) ( ) ( 1) ( ) ( 1)
1 1 1 1 1 1 0i i i i T i i

f n n n n n nt   
           H S S p p S p p Q u u   (13) 

Likewise, the following equation holds for a mechanical system with the essential boundary,  

    ( ) ( 1) ( ) ( 1)
1 1 1 1 0i i i i

n n n n
 

     Q p p K u u  (14) 

Then the displacement increment during the iteration can be solved as 

    ( ) ( 1) 1 ( ) ( 1)
1 1 1 1

i i i i
n n n n

  
    u u K Q p p  (15) 

Inserting (15) into (13), variations of pore fluid pressure during three successive iterations can be 
expressed as the following,  

       1( 1) ( ) 1 ( ) ( 1)
1 1 1 1

i i T i i
n n f n nt

  
         

A

p p H S S Q K Q S p p 


 (16) 

To get a stable and convergent solution of u  and p , the variation of pore fluid pressure during 

two successive iterations should vanish with iteration continues (while from (15), the variation of 
displacement also vanishes), which requires that the spectral norm of the amplification matrix A to 
be smaller than 1, viz  

 1A  (17) 

With a suitably selected stabilization term S ,  (17) can be satisfied unconditionally with no limit 

imposed on the time step size. As is self-evident, the stabilization term would influence the 

amplification matrix, and therefore influence the convergence rate of the iterations. The closer A  

approaches zero, the faster the solution converges. Ideally, 1T S Q K Q provides the fastest 

convergence rate. In this ideal case, the iterative scheme ends after the third iteration, i.e., it obtains 
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the required solutions in two iterations and needs a third one for tolerance checking.  
If the stabilization term is not included, the stability condition requires that the amplification factor 
must satisfy the following condition 

    1 1 1T
ft

    H S Q K Q  (18) 

For a prescribed boundary value problem, H , S and K  usually remain unchanged, therefore the 

range of time step ft for a stable iterative scheme is constrained by (18). The scheme is thus 

conditionally stable when the stabilization term is not introduced. 
 
5.2.2 Error propagation method 

Denote by  ,p u   the true solutions. 1
p

nr and 1
u
nr  are the local truncation errors due to temporal 

discretization. Eq.(19) is the flow equation with true solution and truncation error implemented.  

      1 1 1 1 1 1
T p p

f n n n n n n n f nt t              H S p S p p Q u u Sp f r      (19) 

Subtracting (11) from (19) and denoting the pressure error as ,( ) ( )p i i
n n n e p p , it becomes 

    ,( 1) ,( ) ,( )
1 1 1 1  p i p i T u i u p p

f n n n n n nt 
          H S S e Se Q e e Se r   (20) 

Similarly, the displacement error ,( ) ( )u i i
n n n e u u  is given by 

 ,( ) ,( )
1 1 1

p i u i u
n n n    Qe Ke r  (21) 

 p u u
n n n  Qe Ke r  (22) 

Subtracting (22) from (21), it reads 

    ,( ) 1 ,( ) 1
1 1 1

u i u p i p u u
n n n n n n

 
      e e K Q e e K r r  (23) 

Substituting (23) into (20), it yields 

      ,( 1) ,( ) 1 ,( ) 1
1 1 1 1 1

p i p i T p i p T u u p p
f n n n n n n n nt   

             H S S e Se Q K Q e e Q K r r Se r   

  

        ,( 1) 1 ,( ) 1 1
1 1 1 1

1' '' '

p i T p i T p p T u u
f n n n n n n

n

t    
   



          H S S e S Q K Q e S Q K Q e r Q K r r

C rA B

 
  

 

         1 1 1,( 1) ,( )
1 1 1' ' ' ' ' 'p i p i p

n n n n

  
     e A B e A C e A r  

      1,( 1) ,( )
1 1 1' ' 'p i p i p

n n n n


     e Ge H e A r  

      1,( 1) 1 ,(0)
1 1 1

0 0

' ' '
i i

p i i p l p l
n n n n

l l

 
  

 

    e G e G H e G A r  

           1 1 1,( 1) 1 ,(0) 1 1
1 1 1' ' 'p i i p i p i

n n n n

     
         e G e I G I G H e I G I G A r  (24) 
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Therefore, to ensure the error does not grow during the iterations (with increasing i ), the spectral 
norm of G should be  

      11 1' ' 1T
ft

        A B H S S S Q K QG  (25) 

This stability criterion is identical to that of (17).  
 
5.3 Staggered stability 
 
This part is to prove that the error does not grow during the time marching (i.e. from 

0 1 nt t t   ). The error in (24) can be further written as 

 

       1 1 1,( 1) 1 ,(0) 1 1
1 1 1

,( 1) ,(0)
1 1 1 1 1 1

,( 1) ,(0) ,(0)
1 1 1 1 1

0

1 0 0 1 1
0

' ' '

'

'

p i i p i p i
n n n n

p i p p
n n n n n n n

n
p i p p
n n n n n l n l n l

l

n
p

n n n l n l n l
l

     
  


     


       



     


      

   

  

 





e G e I G I G H e I G I G A r

e L e M e N r

e L e M M L e

M M e M M N r



  1 1'n n N r

 (26) 

If a full iteration (i.e. large value of i ) is adopted, 0i L G ; or in the special case that 0G , 
0L , then the first two terms on the right side in the last equation of (26) vanish. Also considering 

that the truncation error 2' ( )O t r  [11], to ensure the stability of the staggered procedure, it 
requires that  

       111 1 1' 1.i T T
ft

          M I G I G H H S Q K Q S Q K Q  (27) 

Therefore, the staggered procedure is unconditionally stable as long as (25) is satisfied.  
 
6. Numerical Simulations 
 
In this section, a 1D consolidation with elastic medium is carried out to verify the iterative coupling 
scheme described before. The effects of support sizes on the number of iterations are also 
demonstrated.  
 
6.1 1D Consolidation with stabilization term 
 
As shown in Figure 1, a 10-m thick saturated elastic medium on an impervious base is subjected to a 
surface surcharge of 20 kPa . Impervious boundaries are assigned to two sides and the base of the 
domain. A free flow boundary, i.e. 0p kPa , is assigned to the top surface. Young's modulus of the 

elastic medium is E=10Mpa, Poisson's ratio is 0.2  , and the permeability is 85 10 /m s . The 
initial pore water pressure 0p  is 20 kPa and effective stress is zero.  Support size of 1.5 times of 

the particle interval is used in the simulations. As derived before, the stabilization term 
1T S Q K Q  should be used to achieve an optimal convergence rate. However, for mathematical 

simplicity, 
1

( )p T pd
K

 S N N  is used in the simulation presented here to demonstrate the 

convergence behavior of the iterative scheme. K is the bulk modulus. The error tolerance are set as 
310p pTOL TOL   . The pore water pressure distribution along the mid-column nodes in the 

simulation is presented and compared with the analytical solution in Figure 2. The simulation and 
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analytical results are in good agreement, indicating that the soil-water coupled scheme is effective 
in solving the consolidation and dissipation problems.  

 
Figure 1. 1D consolidation model setup 
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Figure 3 present the change of relative error norm during the first 100 iterations. Every line 
represents the convergence behavior of the relative error norms of u and p during one time step. The 
error norms decrease linearly in a log scale until the prescribed tolerances values are satisfied, i.e., 

( 1) ( ) ( 1)
1 1 1

310i i i
n n n
 




  p p p and ( 1) ( ) ( 1) 3
1 1 1 10i i i

n n n
  
   u u u . Figure 4 shows the number of iterations 

needed in each time step of the simulation. In general, convergence can be achieved in around 5 
iterations. However, a varying number of iterations are needed in the later part of the simulation.  
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Figure 4. Comparison of iterations numbers 

 

 
7. Conclusions 
 
A sequential hydro-mechanical coupling scheme using RKPM is presented in this paper. From the 
stability analysis and numerical simulations, the following conclusions can be drawn 

 With a suitably chosen stabilization matrix S , the stabilization technique is proved to be 
able to effectively make the scheme unconditionally stable. Without the stabilization term, 
the scheme is proved to be conditionally stable. 
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 From 1D consolidation simulation case, the solution will effectively converge to the 
prescribed tolerance during the iterations.  

 The effect of stabilization term on the convergence rate should be further explored. An 
optimal value should be pursued whenever possible.   

 The applicability of the iterative scheme for nonlinear problems should be further studied. 
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