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Abstract Crack layer (CL) model is applied for modeling of brittle fracture of engineering thermoplastics. It 

specifically used in polyethylene structures, where a process zone (PZ) formed in front of crack is a narrow 

wage-type layer consisting of drawn fibers and membranes. To model CL requires an evaluation of stress 

intensity factors (SIF) and crack opening displacements (COD) within the crack and PZ domains. This paper 

is aimed to construct SIF and COD formulas for three specific geometries: a semi-infinite crack in an infinite 

solid; a single-edge notched specimen, standard Pennsylvania notch test (PENT, ASTM F 1473) and a new 

stiff constant-K (SCK) specimen. The approximate SIF and COD formulas are expressed as superposition of 

two elastic solutions one due to remote load and another associated with closing forces. The paper presents 

the computational technique in details. The approximate expressions of SIF and COD are used to present the 

method of computation the shape and the size of PZ, as well as the crack and PZ driving forces. The CL 

parameters then are used in simulation of CL growth and prediction of the lifetime of engineering structures 

made of thermoplastics. 
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1. Introduction 
 

In continuum mechanics, a crack is conventionally considered as an ideal cut in an elastic, 

elasto-plastic or visco-elasto-plastic medium. The concept of surface (fracture) energy associated 

with crack faces introduced by Griffith [1] was the first important step in thermodynamics of brittle 

failure. Barenblatt [2, 3] proposed a simple model of cohesive forces acting along the crack surfaces 

in a vicinity of crack tip. A year later Dugdale [4] independently developed a similar model for 

plastic deformation along an extension of crack-cut. Mathematically the two models turn to be 

identical and are commonly referred to as the Dugdale-Barenblatt (D-B) Model (also known as 

Cohesive Zone Model). The essential assumption of D-B model is that the stress singularity at the 

crack tip vanishes due to cohesive forces or plastic deformation at the crack front zone. Formally it 

expressed as zero stress intensity factor (SIF, K ), i.e., 0K  . However, the stress singularity results 

from two basic assumptions of linear elastic fracture mechanics: 1) linear elastic stress-strain 

relations are maintained in near crack tip region without limitation; 2) the crack is ultimately sharp 

with zero curvature at the tip. In real engineering materials, however, neither of these two 

assumptions is correct. Indeed, 1) a damage in form of crazing, micro-cracking, shear-banding, 

cavitation etc. is formed in response to high stresses and the crack-damage interaction limits the 

stress level in the damage zone region; 2) large deformation of the crack front region results in the 

positive crack tip curvature, even when it could be zero before loading. It implies that the crack in 

engineering materials is commonly surrounded by a damage zone (generally called “process zone”) 

and the crack-damage interaction plays the major role in formation of stress field as well as in 

fracture propagation process. 

 

This leads to an alternative approach to studies of SCG known as Crack Layer (CL) model [5, 6]. 

CL model was originally proposed more than 3 decades ago and after that was further developed 

and applied for modeling various aspects of brittle fracture process [7-13]. In CL model the crack 

and the process zone, which usually precedes and surrounds the crack during fracture propagation 

in plastic components, considered as one thermodynamic system, Crack Layer. In HDPE, the 

process zone (PZ) is a thin wedge shape layer of cold drawn fibers and membranes. The stress and 

strain fields in CL model can be presented as a superposition of that in the specimen with cut off CL 
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subjected to an external load ( F
 or 

) and a thin wedge shape PZ domain with variable width 

0  of original material that undergoes cold drawing under a distributed closing tractions 
dr  as 

shown in Figure 1. 

 

Figure 1. Decomposition of Crack Layer Model. 

 

Accordingly, CL growth is decomposed into two closely coupled processes: 1) the PZ growth into 

the surrounding original material; 2) the crack penetration into the PZ [13]. 

 

The thermodynamic forces for such elementary processes are conventionally presented as the 

derivatives from Gibbs potential of the system with respect to the corresponding CL geometrical 

parameters such as the crack and the PZ lengths. Performing the calculations one can show that the 

thermodynamic force driving PZ growth 
PZX  is expressed as [13]: 

 
2 PZ

PZ trtot

PZ

K V
X

E



  

 
, (1) 

where totK  is the total SIF presented as the sum of SIF due to remote load   and SIF due to 

traction dr  along the PZ boundary; E  plane strain Young’s modulus; 
tr  the specific energy 

of transformation, i.e., the work required to transform a unit mass of original material into an equal 

mass of oriented unstressed state plus the difference of strain energy densities in the original and 

drawn states; 
PZV  PZ volume; and PZ  process zone size. 

 

Similarly, the crack driving thermodynamic force 
crX  has the following form [13], 

 1 2CR crX J   , (2) 

where 1

crJ  is the energy release rate due to crack extension into the PZ, when PZ is stationary, and 

2  is surface (fracture) energy per unit length. 

 

A stationary CL configuration takes place, when the thermodynamic forces are not positive, i.e., 

0PZX   and 0CRX  . The equilibrium is achieved, when the both forces equal zero. At a small 

deviation from equilibrium, a thermodynamic system has a tendency to return to the equilibrium 

state. However, fracture is an essentially irreversible process: there is no “healing”, when the PZ 

fibers are broken, or PZ advances into the original material via cavitation followed by cold drawing 

of the material between the cavities and formation of membranes and fibers. Thus, when CL departs 

from one stationary state, it moves into next stationary configuration. Such process of crack layer 

propagation continues by crack and process zone assisting mutual growth. The described CL 

propagation is formalized in the following system of coupled ordinary differential equations with 

respect to the crack length ( cr ) and the PZ size ( pz ): 
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k X if X and if X
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    


   

, (3) 

where 
1k , and 

2k  are the kinetic coefficients, which are evaluated experimentally. 

 

Evaluation of CL driving forces requires a computation of SIF and crack opening displacement 

(COD). In this paper we present a semi-analytical method of SIF and COD computations. The 

method is illustrated by solution for three geometries: a semi-infinite crack in an infinite solid; a 

single-edge notched specimen, standard PENT specimen (ASTM F 1473) and a stiff constant-K 

(SCK) specimen. The approximate formulas for SIF and COD are expressed as superposition of two 

elastic solutions for the listed above samples due to: 1) remote load 
 or F

 ; and 2) closing 

force 
dr . The close form solution for a semi-infinite crack in an infinite homogeneous and linear 

elastic solid is used as the basic expression. The solution for any finite specimen geometry is 

constructed by introducing a geometry correction factor to the basic expression. The Green’s 

functions technique is effectively used to construct analytical expressions for SIF and COD. Then, 

the approximate expressions for SIF and COD are employed in computations of the CL driving 

forces and simulations of the slow fracture propagation process in HDPE [8, 13]. 

 

2. Semi-Infinite Crack in an Infinite Plate 

 
2.1. SIF Formula 

 

The decomposition shown in Fig. 1 is first applied to the semi-infinite crack in an infinite 

homogeneous and linear elastic solid subjected to a distributed load 
 over L  and a crack 

closing load dr  on PZ (see Figure 2 below). L  is the length of CL, which is the summ of actual 

crack length cr  and PZ size pz , i.e., cr pzL   . The SIF Green’s function for the 

semi-infinite crack is well known: 

  
2SIFG x
x

 , (4) 

where the origin of the coordinates is placed at the crack tip. 

 

 
Figure 2. Decomposition of the problem of a semi-infinite crack in an infinite plate subjected to a distributed 

load  and a closing force dr  on PZ. 

 

For the boundary conditions and loading shown in Figure 2 a and b, SIFs are readily obtained by 

the standard application of Green’s function: 

Boundary Condition a:       
0

2 2
( )

L

SIF

I

L
K K G x dx


 




      ; (5) 
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Boundary Condition b:       
0

2 2
( )

pz

dr pzSIF

dr I dr drK K G x dx


 


    . (6) 

By applying the superposition to stress filed, the total SIF for the semi-infinite crack loaded as 

shown on the left side of Figure 2 is: 

  2 2
tot dr dr pzK K K L 


      . (7) 

2.2. COD Formula 

 

The COD (x) is convenient to express in the following integral form using an axillary fictitious 

force Q (x) perpendicular crack face [14]: 

 
0 1

2
( ) ( , ) ( , )

'

L

I I

Q

x K K Q d
E

    



   . (8) 

We select the origin of coordinate at the beginning of distributed load
, i.e., on the distance L 

from the crack tip (see Figure 2a). For calculations of COD   due to distributed load two cases 

should be considered: Case I: 0 x L  , x L   and Case II: 0x  , 0 L  . 

 

In the Case I, 

    
1

2
, ( , ) ( , )

'

L

I I Q
x

x K K Q d
E

       
    (9) 

Substituting Eqs. 4 and 5 into Eq. 9, one can find the COD formula. It is noted that x  in Eq. 4 

should be replaced by x   due to the change of the origin. Finally, the COD is:  

Case I:  
8

,
'

L

x

x d
E x


  

 


 


 ; and Case II:  

0

8
,

'

L

x d
E x


  

 


 


  (10) 

Performing the integration in (10), and shifting the origin to the crack tip one finds the COD:   

  
 48

, ln , 0
L x x L

x Lx x
E E x L


  

 


 

 
   

  
. (11) 

The reduction of COD due to the closing force dr  is determined by the same procedure. It takes 

form:  

  
 48

, ln , 0
pzdr pzdr

dr dr pz

pz

xx
x x x

E E x


  

 


   

  
. (12) 

The analytical expression for total COD for the semi-infinite crack loaded as shown in Fig.2 is:  

 

 
 

 

48
( , ) ( , ) ln

48
ln

tot dr

pzdr pzdr
pz

pz

L x x L
x x x Lx

E E x L

xx
x

E E x


    

 



 




 
   

  


 

  

. (13) 

Figure 3 shows an example of COD profile for normalized stress 0.4dr     and CL sizes
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0.1pz pz cr  . Clearly the COD formula captures the beak-type opening at the tip of the crack. 

 
Figure 3. A COD in the crack – load configuration shown in Figure 2 left. Dashed line is COD due to 𝜎̅ =

0.4; the negative COD is the closure due to drawing stress ℓ̅𝑝𝑧 = 0.1. 

 

3. Single Edge Notch Specimen 
 

The PENT is a standard test widely used for evaluation of the slow crack growth (SCG) resistance 

of polyethylene (PE) pipes. In PENT the failure time is recorded and used to rank various PE with 

respect to SCG resistance.  

 

3.1. SIF Formula 

 

A single edge notch (SEN) specimen is used in PENT. The specimen is subjected to a constant load 

( 2.4MPa  ) and undergoes creep until failure. A closing load dr  is applied on the PZ that is 

in front of actual crack. The SIF due to   is determined in the following way [14]: 

   1( / )IK K L F L W       . (14) 

where, L  is CL length ( cr pzL   ) in mm , W  the width of the specimen in mm . The 

correction factor  1F L W  with better than 0.5% accuracy can be found in [14]. 

 

Similarly the SIF Green’s function for SEN specimen is ( x is counted from the edge) is: 

  2

2
,SIF

SENG F x L L W
L

  , (15) 

with the correction factor  2F L W given in [14]. Thus,  2

2
,

cr

L

dr
drK F x L L W dx

a




   and by 

superposition one readily finds the total SIF expression in terms of known correction factors: 

  1 2

2
( / ) ,

cr

L

dr
totK L F L W F x L L W dx

L


 


    . (16) 
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3.2. COD Formula 

 

The COD depends on the crack size cr , the PZ size pz , the width of the specimen W , and the 

load. It is convenient to normalize the crack size and PZ size as follows cr cr W  and 

pz pz cr . The COD for PENT specimen has been evaluated numerically using FRANC2D. The 

calculation has been carried on a series of PENT specimen configurations with 0.35, 0.45, 0.55cr  . 

For each
cr

, the normalized PZ size varies 0.1, 0.2, 0.3, 0.4pz  . By comparing the numerical 

results with COD for the semi-infinite crack, we obtain the COD expression for the PENT. Here 

“comparison” means the first term on the right hand side of semi-infinite crack solution (Eq. 11) is 

replaced by the Williams expansion [15]  1 2 3 2 5 2 ...ax bx cx   , x  is the distance measured 

from the tip of the PZ, and the higher order term are ignored. The difference is represented by 

Diff  throughout the paper. The coefficients a , b , and c  are determined for each combination 

of cr  and pz  by least squares fitting. Analytical expressions for three coefficients are provided 

by fitting the numerical results. 

 

Hence, the normalized COD due to the remote load   is the sum of Diff  and the second term 

in the right hand side of the semi-infinite crack solution (Eq. 11): 

    2
18 1

( , ) 1 ln
2 1

pz pz

cr pz pz

pz pz

xW
x x a bx cx x

E x


  




 

  
       

   
 

. (17) 

 

The same procedure is applied to the COD due to dr , except that the second term on the right 

hand of Eq. 12 instead of Eq. 11 is used. It leads to the following expressed: 

    28 1 1
( , ) 1 ln

2 1

dr
dr dr cr pz

W x
x x a b x c x x

E x


  



 
        

   

. (18) 

The total opening tot  is: tot dr    . 

 

4. Constant-K Specimen 

 
Equation of SCG is commonly formulated as a functional relation between crack growth rate and 

SIF that usually depends on the remote load, crack and PZ lengths (CL size) as well as specimen 

geometry. Thus, one needs to monitor crack and PZ lengths in real time to formulate CL growth 

equations. It is technically challenging to monitor CL dimensions in SCG process in not transparent 

materials. A specimen for which SIF does not depend on crack length allows one to reconstruct the 

SCG rate ~ SIF relations without monitoring the process. Tapered Double Cantilever Beam (TDCB) 

has long been used for crack growth studies in metals [16]. Unfortunately, in application to 

polymers, TDCB specimen displays a very large deformation that compromises the assumptions of 

linear elasticity. A stiff constant-K (SCK) specimen has been design for relatively soft materials 

[13]. It is stiffer than TDCB and a few other alternative specimen geometries examined. That was a 

reason for the name. The diameters and locations of holes are designed to maintain the constancy of 

SIF. The side grooves reduce the plane stress effect in the surface layers. 

 

4.1. SIF Formula 
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In SCK specimen, SIF due to remote load F  is independent on crack length in the crack size 

range 0.15 0.4cr W   and simply related to the applied load ( F , 0B , eB , and W  are 

specified in Figure 5): 

   6.56I

eff

F
K K F

B W


   . (19) 

           

The Green’s function for SIF due to self-equilibrated double forces applied to the crack faces in 

SCK specimen is obtained by introducing a correction factor to the Green’s function of semi-infinite 

crack in an infinite solid (
2semiG
x

 ): 

  
1 2 3 2

2

2
( , , )SCKG x L W x x

x L L

 


   . (20) 

where x  is the distance from the tip of crack layer (CL), L  is CL length ( cr pzL   )  

Thus, the SIF due to dr  is obtained by integrating the Green’s function over the PZ size and the 

total SIF totK  is obtained by tot drK K K  . 

 

4.2. COD Formula 

 

Based on numerical analysis of SCK specimens with different geometries ( pz L 0.1, 0.2, 0.25, 

0.3; and L W  0.2, 0.25, 0.3, 0.35), the COD   and dr  at a point x  due to the remote load 

F and dr  respectively can be presented in the following forms: 

   

2

2

0

8

e

F x x x

E L L LB B
   






 
   

  
 and 

2

2

8
' ' '

'

dr
dr

pz pz pz

W x x x

E


   



 
    

 

 (21) 

The coefficients  ,  , and are functions of only one variable L/W and the coefficients  ,   , 

and    are simple functions of pz , L  and W . The total opening is: tot dr    . 

 

The same approach is readily applicable to other specimen geometries. Thus, the evaluation of CL 

parameters is the building block for calculation of CL driving forces and simulation of CL growth.  

 

5. Examples of Crack Layer Growth Simulation 
 

The process zone driving force PZX  monotonically decreases with increase of PZ size. The 

equilibrium PZ size eq

pz
 corresponds to vanishing of the corresponding thermodynamic force: 

 
2

0
'

pz

PZ
trtot

PZ x

K V

E





  


. (22) 

The experimental determination of the equilibrium PZ size is conducted by direct observations of 

striations of fracture surface in discontinuous CL growth. A comparison of calculated equilibrium 

PZ size eq

pz
 with experimental data (Figure 4 (a)) at elevated temperature is shown in Figure 4 (b). 
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Note the experimental equilibrium size of process zone is measured directly from the fracture 

surface as shown in Figure 4 (a). The CL model predictions agree very well with observations. It is 

also interesting to compare eq

pz
 with conventional D-B model prediction. The process zone size 

DB

pz  in D-B model is determined by the requirement 0totK 
 
with totK  defined by 

tot drK K K  . It is also shown in Figure 4 (b) that the experimentally observed equilibrium size 

of process zone eq

pz
 is significantly smaller than 

DB

pz  predicted by D-B model. In this specific 

example, the equilibrium size of process zone eq

pz
 is within the range of 1.3~2.8mm, whereas D-B 

prediction 
DB

pz  is between 3.8~8.8mm, three times larger. This could be expected since the D-B 

model ignores the energy dissipation by cold drawing of original material into the oriented fibers of 

PZ. There are clear trends in eq

pz
 dependency on load and temperature: 1) For a given temperature, 

the equilibrium PZ size eq

pz  
linearly increases with increase of load; 2) For the same value of K∞, 

eq

pz
 increases with increase of temperature; 3) The eq

pz  
in CL model is significantly smaller than 

the D-B zone size; 4) The difference between the equilibrium PZ in CL and  D-B zone sizes 

increases with increasing load. 

 
(a)                                       (b) 

Figure 4. (a). Fracture surface of a CT specimen test at 80°C (Note: the first striation is resulted from the pre 

load and thus ignored); (b) Comparison of predicted eq

pz  
values with observations from (a). 

 

The PZ and crack thermodynamic forces (Eqs. 1-2) are non-linear functions of crack and process 

zone lengths. Thus, the system of Eq. 3 despite of its simple appearance is a nonlinear system of 

ODE, solution of which calls for numerical methods. Below we show two examples of numerical 

simulation of CL growth in a compact tension (CT) specimen that has the same geometry as SCK 

except holes. SIF in CT specimen increases with crack length. The first example is shown in 

Figures 5 (a). It presents a discontinuous, stepwise crack layer growth from one stationary CL 

configuration to the next one.  

 

At the beginning the crack is stationary, whereas PZ grows toward its equilibrium size 9.5L mm . 

The first equilibrium size of CL L  is reached in about 4t hours , and is maintained constant 

until the degradation of PZ material triggers the crack growth into PZ. It is depicted by the lower 

dash line moving up at 28t hours . The crack propagates through PZ and gets arrested at the time 

33t hours , when it meets the original material at the tip of PZ. PZ grows accompanying the crack 

growth, since 0PZX   during this time; PZX  decreases with an increase of the PZ length and CL 
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reaches the second stationary configuration, when PZX  vanishes. A newly drawn material 

constitutes the new PZ. Then, the same degradation process takes over the drawn material and crack 

propagates through the second PZ the same way as in the first step. In CT specimen, the maximal 

value of PZX  increases with CL length. As a result, the equilibrium PZ size increases and the 

duration of steps decreases with step number leading to an accelerated CL growth and final 

instability and transition to rapid crack propagation. 

 
(a)                                      (b)                                        

Figure 5. (a) Numerical simulation of discontinuous crack layer growth for a CT specimen at 80°C; 

(b) Numerical simulation of transition from continuous to discontinuous CL growth. 

 

The second example presents a different scenario of CL propagation: a transition from continuous to 

a discontinuous, stepwise CL growth shown in Figure 5 (b).  

 

In this case, at the beginning, the PZ material degradation rate is comparable with the rate of PZ 

growth. In such case, the crack starts to grow into PZ before PZ reaches equilibrium. This process 

appears as continuous CL growth and the lines of ( )cr t  and L(t) practically coincide up to 

33t hours  as shown in Figure 5 (b). However, with increase of totK  the PZ growth rate 

increases whereas the degradation rate of PZ material is the same. Thus, PZ “runs” away from the 

crack and PZ size becomes larger and larger and finally reaches the equilibrium size. It triggers a 

transition of from continuous CL growth mechanism to the discontinuous one. After such transition, 

the same process of discontinuous CL growth as described above (Figure 5 (a)) takes place. 

 

For comparison with the vast literature on phenomenological crack growth studies, we introduce an 

average rate of crack layer growth L   as a ratio between CL length increment in discontinuous 

growth and the duration of corresponding step. A correspondence between L   and the SIF due 

to remote load K  in double logarithmic scale represents the crack layer growth simulation in the 

conventional Paris-Erdogan equation form. The rate L   depends on basic fracture parameters 

such as kinetic coefficients 1k  and 2k  in Eq. 3, dr , tr and  as well as elastic and creep 

properties. It also depends on specimen shape and size, crack size as well as the magnitude and rate 

of applied load. The relation between the numerical simulation of L   and the remote load SIF 

K  allows one to establish a correspondence between empirical coefficients in Paris-Erdogan 

equation and basic material properties. Apparently, there are changes in the SCG pattern depending 

on load, CL size and temperature. It can be translated into different powers in Paris-Erdogan 

equation. 
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6. Conclusions 

 

The focus of the paper is brittle fracture in PE structures resulting from crack growth. We outlined 

an alternative to the conventional approach for lifetime assessment. Our approach consists of a 

sound physical model of SCG and numerical simulation of the process. A combination of modeling 

and experimental work is required to evaluate the basic parameters employed in constitutive 

equations of the model. After that the numerical simulation of SCG can be readily performed. The 

experimental work is convenient to conduct with SCK specimen, since no in-situe observation is 

required and numerical tools for data analysis are developed. Note: the crack initiation time is 

ignored. Thus, the lifetime assessment is a conservative one: it gives the lower bound of life 

expectance.  
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