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Abstract Experimental evidence, molecular dynamics simulations and theoretical analyses of nanovoid 
growth and coalescence in ductile materials indicate that nanovoid growth, coalescence, and stain 
localization depend strongly on distribution and volume fraction of the nanovoids in ductile porous materials. 
In the light of this mechanism, a generalized self-consistent theoretical model to describe the dislocation 
emitted from nanovoid accounting for the effect of neighboring nanovoids is suggested. The explicit solution 
to the critical stress is derived by means of the complex variable method. The influence of the nanovoid size, 
volume fraction and uniform distribution density of neighboring nanovoids in the effective medium as well 
as the surface effect on the critical condition required for dislocation emission from nanovoid surface is 
discussed. 
 
Keywords dislocation emission; neighboring nanovoid interactions; nanovoid volume fractions; surface 
stress 
 
1. Introduction 

The effect of preexisting volume defects, such as voids and cracks, is generally to lead to an 
increase in ductility and a reduction in the load carrying capacity of the porous material. A critical 
mechanism of ductile damage usually involves the nucleation, growth and coalescence of nanovoids, 
as a result of the applied loading conditions, in a plastically deforming porous materials. According 
to what we know, there is lacking study about nanovoid growth by dislocation mechanisms, which 
depends on the size and distribution of the nanovoids in nanoporous materials. In order to 
quantitatively estimate the interaction of multiple nanovoids in the particular case of porous solids, 
a generalized self-consistent analytical approach is utilized to study the effects of neighboring 
defect interactions, and void distribution and volume fractions on the dislocation emission from 
nanovoid surface, in which a large number nanovoids are statistically homogeneously distributed. It 
is also a feasible choice for two-dimensional situations in which the voids are roughly cylindrical 
and near uniformly distributed. The size-effect modeled here pertains to the surface elasticity theory 
of Gurtin-Murdoch on the nanometer scale. The explicit solution to the critical stress is derived by 
means of the complex variable method. The influence of the nanovoid size, the surface effect, 
nanovoid content and uniform distribution density of neighboring nanovoids in the effective 
medium on the critical condition required for dislocation emission from nanovoid surface is 
discussed. 

 
2. Modeling and solution 

In this section, we present a framework for a generalized self-consistent theory accounting for the 
effect of neighboring nanovoids in ductile nanoporous materials, based on the dynamics of void 
nucleation and growth. For a two-dimensional case, the constitutive model for the material is 
divided into three regions: the inner circular region representing the nanovoid phase, the 
intermediate annular region representing the matrix phase, and the infinitely extended outer region 
representing composite phase or effective medium. Elastic deformation under plane strain 
conditions is assumed and the nanovoids are assumed to be and remain cylindrical, and are 
statistically homogeneously distributed so that their shape is characterized by a single parameter. 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-2- 
 

Lubarda [1, 2] have modified previous analysis by using the expression for the image force on a 
dislocation emitted from the surface of the void. In this case, the stress fields of an edge dislocation 
emitted from the surface of the void correspond to the imposed displacement discontinuity along the 
cut from the surface of the void to the center of the dislocation. The geometrical structure is shown 
in Fig. 1. One edge dislocation with Burgers vector 0B  was emitted from the surface of the circular 
nanovoid to the point 0z  in the matrix phase, and ( )0 1

i iz R e eθ ϕρ= + . The rest edge dislocation with 
Burgers vector 1B  is located at the surface of the circular nanovoid, and 1 1

iz R e ϕ= . They are both 
assumed to be straight and infinite along the direction perpendicular to the xy -plane, and 

( )
0 1

i
x y zB B b ib b e ϕ θ+= − = + = , 2 2

z x yb b b= + .  
 
 
 
 

 

 

 

 

 

 

 

Fig.1 Dislocation emitted from the nanovoid surface in generalized self-consistent model 
 

For the current problem, the elastic strain and stress in the two materials produced by lattice 
mismatch and dislocations can easily be calculated using the theory of elasticity. For nanovoid 
surface, surface stress resulting from a surface free energy and a constant residual stress was 
suggested in the Gurtin-Murdoch model [3-5]. So according to Sharma et al. [6], the equilibrium 
equation and the constitutive relations on the surface 1Γ and the interface 2Γ can be expressed as 

                      ( ) ( ) ( )
( )

1
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( ) ( ) ( ) ( )2 2 1 1 0rr r rr ri iθ θσ ζ σ ζ σ ζ σ ζ
− +

+ − + =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                    (2) 

( ) ( ) ( ) ( ) 0 0
1 1 2 2r r ru iu u iu u iuθ θ θζ ζ ζ ζ

+ −
+ − + = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦                   (3) 

where ru and uq are the displacement components, rrs and rqs are the stress components in the polar 
coordinates, 0

ru and 0uθ are the displacements induced by growth or shrink of neighboring voids. In 

addition, 1t R= , 2Rζ = . The symbols 1R  and 2R are the inner and outer radii of the intermediate 

annular region (the matrix phase). 
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For plane strain problem, stress fields and displacement fields may be expressed in terms of 

Muskhelishvili’s complex potentials [7] ( )zΦ and ( )zΨ  

( ) ( )2yy xx z zσ σ ⎡ ⎤+ = Φ +Φ⎣ ⎦                                (4) 

( ) ( )'2 2yy xx xyi z z zσ σ σ ⎡ ⎤− + = Φ −Ψ⎣ ⎦                             (5) 

( ) ( ) ( ) ( ) ( )' ' '2 x y
zu u iz z z z z z
z

μ κ
⎡ ⎤

+ = Φ −Φ + Φ + Ψ⎢ ⎥
⎣ ⎦

                      (6) 

where '
x xu u θ= ∂ ∂ , '

y yu u θ= ∂ ∂ , ( ) ( )' z d z dzΦ = Φ⎡ ⎤⎣ ⎦ , the overbar represents the complex conjugate, μ is 

the shear modulus of the bulk solid,υ is Poisson’s ratio of the bulk solid , 3 4κ υ= − for plane strain 
state. 

Under the assumption that the interface adheres to the bulk without slipping, and in the absence 
of body forces, according to Sharma et al. [6] based on Gurtin and Murdoch surface/interface model, 
the constitutive equation in the surface region is given as 

( )0 0 0 0 0 02θθ θθσ τ μ λ τ ε= + + −                                 (7) 

where 0
θθσ and 0

θθε denote surface stress and strain, 0μ and 0λ are surface Lame constants, 0τ is the 
residual surface tension.  

According to Gao [8], the uniform eigenstrains could be represented to express the displacements 
produced by the mismatch strains ε of the matrix and the effective medium. 

0 0
2ru iu Rθ ε+ =                           2Rζ =      (8) 

where ε is dilatational or shrunk eigenstrain of neighboring voids in the matrix phase. The effective 
medium plasticity mismatchesε may be produced due to the yield stress and the strain hardening 
exponent on the nanovoid growth and coalescence. It is possible, of course, that to be attributed to 
mismatchs of the thermal expansion coefficient between the constituents. 

According to Muskhelishvili [7], two complex potentials ( )1 zΦ and ( )1 zΨ in the matrix can be 

taken the following forms  

( ) ( )0 1
1 10

0 1

z z
z z z z
γ γ

Φ = + +Φ
− −

                              (9) 

( )
( ) ( )

( )0 0 0 1 1 1
1 102 2

0 10 1

z z
z z

z z z zz z z z
γ γ γ γ

Ψ = + + + +Ψ
− −− −

                    (10) 

Two complex potentials ( )2 zΦ and ( )2 zΨ  in the effective medium can be taken the following 

forms 

( ) ( )
' '
0 1

2 1 20z z
z

γ γ+
Φ = +Γ +Φ                              (11) 
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( ) ( )
' '
0 1

2 2 20z z
z

γ γ+
Ψ = + Γ +Ψ                             (12) 

where ( )1 11k ki Bγ μ π κ= − +⎡ ⎤⎣ ⎦ , ( )'
2 21k ki Bγ μ π κ= − +⎡ ⎤⎣ ⎦ ( )0,1k = , ( )1 4xx yyσ σ∞ ∞Γ = + , ( )2 2 2yy xx xyiσ σ σ∞ ∞ ∞Γ = − +  

( xxσ ∞ , yyσ ∞ and xyσ ∞ are the remote stresses). ( )10 zΦ , ( )10 zΨ , ( )20 zΦ  and ( )20 zΨ are holomorphic and the 

first two can be expanded in Laurent series 

( )10
0 1

k k
k k

k k
z a z b z

∞ ∞
−

= =

Φ = +∑ ∑                               (13) 

( ) 2 2
10

0 1

k k
k k

k k

z c z d z
∞ ∞

− − −

= =

Ψ = +∑ ∑                            (14) 

where the unknown coefficients ka , kb , kc and kd could be determined from the boundary conditions 
(1)-(3). 
  According to the work of Fang and Liu [9] and Zhao et al. [10], by a sufficient number of 

calculations, the explicit expressions of two complex potentials ( )1 zΦ and ( )1 zΨ in the matrix can be 

given 

( ) 0 1
1

0 10 1

k k
k k

k k

z a z b z
z z z z
γ γ ∞ ∞

−

= =

Φ = + + +
− − ∑ ∑                        (15) 

( )
( ) ( )

2 20 0 0 1 1 1
1 2 2

0 10 10 1

k k
k k

k k

z z
z c z d z

z z z zz z z z
γ γ γ γ ∞ ∞

− − −

= =

Ψ = + + + + +
− −− −

∑ ∑             (16) 

3. Critical stress for dislocation emission 
According to Hirth and Lothe [11] and Peach-Koehler formula, the image force acting on the 

dislocation can be written as 

( ) ( ) ( ) ( ) ( ) ( )
0

'
0 0 0 0 0 0 0 0x y y x y xf if b ib z z b ib z z z⎡ ⎤ ⎡ ⎤− = + Φ +Φ + − Φ +Ψ⎣ ⎦⎣ ⎦              (17) 

where xf and yf are the force acting on the edge dislocation with Burgers vector 0B  in the x  and y  

directions, respectively. ( )0 0zΦ and ( )0 0zΨ are the perturbation complex potentials in the matrix. 

According to Qaissaunee and Santare [12], the perturbation complex potentials are calculated as 
follows: 

( ) ( ) ( )2 1 21
0 0 01 02 1 1 21 22 2 1 21 22 2

3 31

k k
k k

k k
z a a a z a a z a z b z b b z b z

z z
γ ∞ ∞

− − −

= =

Φ = + + Γ + + + Γ + + + − Γ +
− ∑ ∑     (18) 

( )
( )

( ) ( )2 1 2 3 4 21 1 1
0 0 01 02 1 1 21 22 2 1 21 22 22

3 31 1

k k
k k

k k

zz c c z c z c c c z d z d d z d z
z z z z
γ γ ∞ ∞

− − − − − − −

= =

Ψ = + + − Γ + + + Γ + + + − Γ +
− −

∑ ∑  (19) 

Based on Stagni [13], the primary physical interest lies on the component of the force along the 
Burgers vector direction (glide force) which are given by 

( ) ( )cos sing x yf f fθ ϕ θ ϕ= + + +                            (20) 

Adopting the criterion from Lubada et al. [14], it is assumed that the dislocation with Burgers 
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vector 0B will be emitted from the surface of the void if its equilibrium distance ρ from the surface of 
the void is equal to the dislocation core cut-off radius 0ρ (one half of the dislocation width, which 
represents the extent of the dislocation core spreading). In the equilibrium dislocation position, the 

glide force vanishes, namely 0gf = . In the present study, we consider the remote applied critical 

stress is the stress required to keep dislocation with Burgers vector 0B in equilibrium position. A 
lower stress would suffice to keep the dislocation in the equilibrium at the distance greater than 0ρ , 
i.e., the equilibrium position of the dislocation is unstable, and the dislocation would be driven 
away from the void indefinitely, or until it is blocked by an obstacle. The angle crθ θ= at which the 
dislocation is emitted from nanovoid corresponds to the minimum value of the applied stress min

crσ . 
So by letting 0ρ ρ= specifies the stress required to emit the dislocation from the surface of the 
nanovoid. 

When considering the effect of the remote axial loading, we suppose that xxσ σ∞ = , 1yy jσ σ∞ = , 

2xy jσ σ∞ = , it yields ( )1 11 4j σΓ = + , ( )2 1 21 2 2j ij σΓ = − + . The following expression for the critical 

stress crσ can be expressed as follows: 

( ) ( )
[ ] ( ) [ ] ( )

Re cos Im sin

Im sin Re cos
img img

cr

f f

M M

θ ϕ θ ϕ
σ

θ ϕ θ ϕ

⎡ ⎤ ⎡ ⎤+ − +⎣ ⎦ ⎣ ⎦=
+ − +

                      (21) 

where ( ) ( ) ( ) ( ) ( ) ( )
0

'
0 0 0 0 0 0 0 0dimg y x d d y x df b ib z z b ib z z z⎡ ⎤ ⎡ ⎤= + Φ +Φ + − Φ +Ψ⎣ ⎦⎣ ⎦  
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b ib
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⎡ ⎤+ + + − + − − −
⎢ ⎥= +
⎢ ⎥+ − − − − +⎣ ⎦

⎡ ⎤− + + − − + +
+ − ⎢ ⎥

+ − + − − −⎢ ⎥⎣ ⎦

 

 
4. Condition for dislocation emission 

The critical stress required to emit the dislocation from the surface of the nanovoid can be 
determined accurately and explicitly given by Eq. (21). In this section considerable attention has be 
paid to elaborating the influence of the nanovoid size, the surface effect, nanovoid content and 
uniform distribution density of neighboring nanovoids in the effective medium on the critical 
condition required for dislocation emission from nanovoid surface. In this paper, we suppose that 
the normalized critical stress for the edge dislocation emitted from nanovoid surface by the shear 
modulus of the matrix 0 1cr crσ σ μ= , the intrinsic lengths of the nanovoid surface 0

1 1α μ μ= , 0
1 1β λ μ=  

and 0
1 1δ τ μ= , the ratio of the shear modulus of the matrix and the effective medium 2 1a μ μ= , the 

radius of the nanovoid 1 zb R b= , the relative spacing between neighboring nanovoids or uniform 
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distribution density of neighboring nanovoids 2 1c R R= . Former studies have indicated that the 
surface properties can be either positive or negative, depending upon the material type and the 
surface crystallographic orientation. According to their results, the absolute values of intrinsic 
lengthsα , β and δ are nearly 1A

o
 [15]. In addition, let 1 2 0.25υ υ= = . The present study focuses 

exclusively on the effect of nanovoid content and uniform distribution density of neighboring 
nanovoids in the effective medium on the critical condition for splitting of dislocation from 
nanovoid surface, providing a remote equal biaxial loading.  

Fig. 2 shows the critical stress to induce dislocation emission from the nanovoid surface as a 
function of emission angle θ  with different ratios of the shear modulus of the matrix and the 
effective medium 2 1a μ μ= and surface elasticity. One should notice that, when nanovoid size b  is 
fixed, the smaller the chosen ratio of the shear modulus a  is, the larger nanovoid volume fraction 
the nanoporous materials contain. The figure presents the critical stress required to emit dislocation 
decreases, while relative most probable critical angle for dislocation emission increases as the ratio 
of the shear modulus decreases. That is to say, when nanovoid size is fixed, the larger nanovoid 
volume fraction in the nanoporous materials makes the dislocation emission take place more easily, 
and relative most probable critical emission angle more pronouncedly depart from the direction 45o . 
They mean that the distinct softening behavior can be happened and the interaction among 
neighboring nanovoids becomes important as nanovoid volume fraction increases. Therefore, it can 
significantly enhance capability of dislocation emission from nanovoid surface, favor the nanovoid 
growth, and then result in decreased ductility of the nanoporous materials. So it is well shown that 
the ductility of the material depresses with increasing nanosize void volume fraction and the 
porosity would evidently affect the ductility of structural materials, in agreement with the analysis 
by Tvergaard and Hutchinson [16]. We have observed a strong influence of surface effect on critical 
condition for dislocation emission. The positive surface elasticity increases the critical stress and the 
relative most probable critical angle for dislocation emission, while the negative surface elasticity 
reduces them. And the larger positive value of surface elasticity makes the dislocation emission 
from nanovoid take place more difficultly.  

20 40 60 80
0.02

0.04

0.06

0.08

0.10 a=0.95,α=β=0.05
a=0.95,α=β=0.1
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a=0.85,α=β=0
a=0.7,α=β=0

σ
cr
0

θ
 

Fig. 2 Dependences of normalized critical stress 0crσ  on emission angle θ  with different ratios of 
the shear modulus of the matrix and the effective medium 2 1a μ μ= and surface elasticity for 0 zbρ = , 

0ε = , 1 1j = , 2 3 0j j= = , 8b = , 1.5c = , 0δ = . 
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Fig.3 shows normalized critical stress for dislocation emission to take place as a function of 

emission angle θ  with different nanovoid sizes and surface residual stresses. When the nanovoid 
volume fraction is given, if the nanovoid size decreases, there must be larger number of same-size 
neighboring nanovoids. The figure shows the critical stress and relative most probable critical angle 
for dislocation emission decrease as the nanovoid size increases. That is to say, when the nanovoid 
volume fraction is fixed, the larger nanovoid size in the nanoporous materials makes the dislocation 
emission take place more easily, relative most probable critical emission angle less pronouncedly 
depart from the direction 45o . In other words, the dependence of critical stress on the neighboring 
number of nanovoids under the same void volume fraction can evidently be observed. Given the 
same void volume fraction, improved critical stress is accompanied with an increase in the 
neighboring number of nanovoids. The larger neighboring number of nanovoids under the same 
void volume fraction has a greater role in the critical stress required for dislocation emission. This is 
because the load-carrying capacity and the stress resistivity of materials can be enhanced by 
redistributing a large void into multiple small ones at nanoscale. These results are reasonable 
agreement with that of molecular dynamics simulations by Mi et al. [17]. As well-evident from the 
Fig. 3, we know that the negative surface residual stress would increase the critical stress, while the 
positive one reduces it. It means that the nanovoid surface characterized by the positive surface 
residual stress clearly promotes dislocation emission and lessens the ductility of the nanoporous 
materials. The larger the positive surface residual stress is, the more easily the dislocation emitted 
from nanovoid surface is.  
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Fig. 3 Dependences of normalized critical stress 0crσ on emission angleθ with different nanovoid 

sizes and surface residual stresses for 0 zbρ = , 0ε = , 1 1j = , 2 3 0j j= = , 0.9a = , 1.5c = , 0α β= = . 
 

In this case in Fig. 4, namely 0.9a = and 8b = , it means that for given void volume fraction and 
nanovoid size, c  characterizes the spacing of neighboring nanovoids or the uniform distribution 
density of the nanovoids. The smaller physical quantity c defines the smaller neighboring spacing or 
the denser distribution of the nanovoids under the same void volume fraction and nanovoid size. As 
is seen from Fig. 4, the critical stress decreases clearly, while the relative most probable critical 
angle for dislocation emission increases as the physical quantity c decreases. That is, the initial void 
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volume fraction and nanovoid size remain constant, the distinct softening behavior can be happened 
and then significantly promotes capability of dislocation emission from nanovoid surface in the 
nanoporous materials with improving the uniform distribution density of the neighboring nanovoids. 
In other words, increasing nanovoid spacing can impede the nanovoid growth and increase ductility. 
These conclusions are further confirmed by the earlier experiment from Dubensky and Koss [18], 
and the finite element analysis from Gao et al. [19]. It is also visibly indicates that the larger the 
negative surface residual stress is, the harder the dislocation emitted from nanovoid surface 
becomes. These observations demonstrate that the density of nanovoid concentration and the 
surface residual stress have a significant effect on determining the deformation behavior of ductile 
materials. 
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Fig. 4 Dependences of normalized critical stress 0crσ  on emission angle θ  with different uniform 

distribution densities of the neighboring nanovoids and surface residual stresses for 
0 zbρ = , 0ε = , 1 1j = , 2 3 0j j= = , 0.9a = , 8b = , 0α β= = . 

 
5. Conclusions 

In conclusion, when nanovoid size is fixed, the larger nanovoid volume fraction in the 
nanoporous materials makes the dislocation emission take place more easily, relative most 
probable critical emission angle more pronouncedly depart from the direction 45o . Under the 
condition of constant void volume fraction, the larger the neighboring number of voids is, the 
higher the critical stress becomes. For given void volume fraction and nanovoid size, the distinct 
softening behavior can be happened and then significantly promotes capability of dislocation 
emission from nanovoid surface in the nanoporous materials with improving the uniform 
distribution density of the neighboring nanovoids. 
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