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Abstract  The Steigmann-ogden surface elasticity model and the Timoshenko beam theory are adopted to 

study the axial buckling of a nanowire (NW) lying on Winkler-Pasternak substrate medium. Explicit 

solutions of the critical buckling force and buckling mode are obtained analytically. The influences of the 

surface stress effect, the geometry of the NW and the elastic foundation moduli are systematically discussed.  
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1. Introduction 
 

 Nanowire (NW) based devices have found important applications in various fields. Traditional 
beams theories failed to interpret the size dependent mechanical behavior of these devices due to 
their surface stress effect. The Gurtin-Murdoch model [1-2] has been widely accepted to study the 
mechanical behavior of nanostructures and nano defects [3-7]. Some researchers found that the 
effective elastic moduli of nanostructures under bending and tension are different[8-9], which could 
not be explained by the Gurtin-Murdoch model. Chhapadia et al.[10] pointed out that the above 
discrepancy could be explained with the modified framework proposed by Steigmann and Ogden 
[11-12]. On the other hand, buckling has long been thought as an unwanted issue and should be 
strictly avoided in structural designs. However, it was demonstrated by some researchers that 
controlled buckling of slender structures such as thin films, nanowires and nanotubes on compliant 
substrates could be utilized in the design of flexible electronics. This paper aims to study the axial 
buckling of a simply supported NW lying on Winkler-Pasternak elastic foundation with the 
Timoshenko beam model and Steigmann–Ogden theory. The influences of the surface stress effect, 
the geometry of the NW and the elastic foundation moduli are systematically discussed. 
 
2. Solution of the Problem 
 
Consider a NW lying on a deformable substrate, which is subjected to distributed transverse load 
and axial forces at both ends. We assume the NW has a circular cross section. The total energy of 
the axially loaded nanobeam can be written as: 
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Here, A denotes the area of the cross section,  is the shear coefficient, 0C  and 1C  are the surface 

elastic modulus and the Steigman-Ogden constant, respectively, S denotes the circumference of 
the cross section. The potential energy of the lateral and axial load is given by: 
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where 

       s ff x q x q x q x   .                         (5) 

Here, ( )sq x  stands for the equivalent lateral force due to the residual surface stress and ( )fq x  

represents the distributed force arising from the substrate medium. To minimize the total potential 
energy, we apply the variational theory, 

      ( ) ( ) 0Total fU w U w     .                         (6) 

Finally, we get: 

2 2

2 2

0 1

( ) ( ) 0

( ) (( * ) ) 0

w w
GA f x N

x x x
w

GA EI C I C S
x x x



 

   
      


       

   

,                (7) 

where 2

A

I y dA  ,  2*
S

I y dS  ,  2* y

S

S n dS  . Take partial derivative of the second equation with 

respect to x ，and substitute the first equation into the second equation, we have:  
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                                                              (8) 
The general solution of Eq. (8) can be written as: 

      ( ) mxw x Ae .                                 (9) 

Substituting Eq. (9) into Eq. (8), we can solve m . 
 
The boundary conditions of a simply supported NW are given as follows: 

        (0) 0w  , '' (0) 0w  ,                             (10a) 

   ( ) 0w L  , '' ( ) 0w L  .                            (10b) 

Substitute Eqs.(10a,b) into Eq. (9), we can get the characteristic equation to solve the critical 
buckling force. The corresponding buckling mode is given by Eq. (9). 
 

3. Results and Discussions 
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The buckling force of the NW is normalized with the critical buckling force of a classic simply 
supported Euler-Bernoulli beam. To see qualitatively how the surface stress effect and the 
Steigmann-Ogden correction influence the buckling behavior of the NW, we adopt the following 
material parameters in this study: 

76GpaE  , 0.3  , 0 0.65 N/m  , 0 1.39 N/mC   , 1 153.6eVC   . 

 
In Figure 1., we ignore the transverse shear effect of the substrate. The diameter and 
Steigmann-Ogden constant are chosen to be 3.5nm and 153.6eV respectively. All the results are 

normalized with the critical buckling force of a classic simply supported Euler-Bernoulli beam at 
each aspect ratio. Figure 1. shows that the surface effect has significant influences on the 
normalized critical buckling forces. When the Steigmann-Ogden constant is positive, the critical 
buckling force is greater than that predicted by the Gurtin-Murdoch theory, which implies that the 
NW is stiffened. It is also noted that the influence of the surface effect (predicted either by the 
Gurtin-Murdoch model or the Steigmann-Ogden model) on the critical buckling force decreases 
when the diameter of the NW increases. The difference between the result predicted by the 
Gurtin-Murdoch theory and that by the Steigmann-Ogden theory is also largely decreased as the 
diameter of the NW increases. Fig. 1 also shows that the critical buckling force for a finitely long 
NW is always larger than that for an infinitely long NW.  
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Figure 1. The normalized critical buckling force of a simply support NW lying on Winkler substrate medium. 

 
In Figure 2., the influences of the Winkler and Pasternak moduli on the critical buckling force are 
studied with the Timoshenko beam model. The material parameters are the same with those in 
Figure 1.. The diameter of the NW is set to3.5nm . From Figure 2., we find that both the Winkler 

modulus and the Pasternak modulus tend to stiffen the NW. As a result, the buckling force for a NW 
lying on substrate medium is always larger than that of a free NW. It is also noticed that the critical 
buckling force is more sensitive to the Pasternak modulus.  
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Figure 2. Variation of the normalized critical buckling force of a simply supported NW lying on 

Winkler-Pasternak substrate medium with respect to its aspect ratio. The diameter of the NW is3.5nm . 

 

4. Conclusions 
 
In this paper, the Steigmann-Ogden model is adopted to characterize the surface effect of the NW. 
Explicit solutions are obtained for the critical buckling force and buckling mode of a simply 
supported NW lying on Winkler-Pasternak substrate medium with the Timoshenko beam theory. 
The following conclusions are drawn through this study: 

(1) The shear effect, the surface stress effect and curvature dependent surface energy all have 
influences on the critical buckling force of the NW. The importance of these influences is highly 
dependent on the diameter and aspect ratio of the NW.  

(2) The Steigmann-Ogden correction can stiffen or soften the NW, depending on the sign of the 
Steigmann-Ogden constant.  

(3) Both the Winkler modulus and Pasternak modulus tend to stiffen the NW. The critical 
buckling force of the NW is more sensitive to the Pasternak modulus. 
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