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Abstract 
 
Formally, the Griffith's energy release rate, the Irwin's integral expression of crack closure energy and the 
Rice's J-integral give same results for linear elastic material. But let us ask a question: do these three 
approaches really give an exact mathematical equality and an identical physical meaning? For this 
purpose, a uniform equation was therefore introduced into our new investigation. Thus, not only the 
Irwin's integral expression of crack closure energy and the Rice's J-integral can be derived from this 
uniform equation, but a very important result has been also obtained from them: the energy release rate is 
separable into two parts. The first part describes the extension of the crack front surface and the second 
the distortion. 
 
Keywords   the Griffith's energy release rate, the Irwin's integral expression of crack closure energy, the 
Rice's J-Integral and the new found Sk-Integral und Tk-Integral 

_____________________________________________________________________________ 

 

1. Introduction 
Cracks and fractures are known natural phenomena and occur everywhere in our daily lives. 
They are mostly associated with catastrophic consequences. Therefore attempts have been made 
for a long time to understand and finally to master them. 

As a pioneer, Griffith (1920) [2] has laid a foundation through examining these phenomena 
energetically. Based on the Inglis (1913) [1] identified stress and displacement field for an 
elliptical crack-like hole in an infinite plate, he has considered the energy balance and introduced 
a new quantity "energy release rate" into the fracture mechanics. His mind was so fundamental 
that it has always been of great importance for the further development of fracture mechanics. 
But his theory was limited only on linear elastic material behavior and mode I loading case. 

Irwin (1957, 1964) [3, 4] expanded the Griffith's thought on complicated load cases and 
established a relationship between the energy release rate and the stress intensity factor. So the 
stress intensity factor for linear elastic material has been widely used. 

A path-independent integral, the well-known J-integral was introduced by Cherepanov (1967) 
[11] and Rice (1968a) [7] into the fracture mechanics. Rice in particular has derived a connection 
between the Griffith's energy release rate and the J-integral and interpreted the J-integral as an 
extended energy release rate. Since that time, the J-integral rapidly disseminated and was used 
for elastic-plastic material in the fracture mechanics. 

All this shows a significant development in the classical fracture mechanics and is the foundation 
of the fracture mechanics. The classical fracture mechanics has found variety applications for 
many different areas. However, it must be clearly mentioned that it can only describe the crack 
problem in relatively simple cases and under certain conditions. It is not yet able to handle and 
exactly describe complicated crack problems in both natural events as well as in everyday life 
and eventually to solve. 

This situation can certainly not satisfy us and the problems mentioned above let us thoroughly 
think whether the foundation of the fracture mechanics is consistent and where and what has not 
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been considered. 

The aim of this paper is to deal with such problems and to find a possible satisfactory solution. 
For this purpose it first has to deal with the existing theories systematically. 

The investigation has the following assumptions: continuum mechanics of observation, 
stationary crack, quasi-static, small deformations, isotropic and linear elastic material behavior, 
elastic-plastic material behavior with power-law hardening and J2 deformation theory. 

There are other theories and attempts to deal with and to describe such problems. These are not 
part of this paper, and they are not discussed here. 

 

2. The Classical Theories of Fracture Mechanics 
2.1 Griffith's Theory 

At first Griffith (1920) [2] published his fundamental work on the treatment of crack problems. 
He investigated an infinite plate with a crack-like elliptical hole under tension (Fig. 1) and gave 
an energy balance to this plate 

 
Fig. 1: an infinite plate with a crack-like elliptical hole under tension (Mode I) 
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where U is the work done by the external force, W the strain energy, WU +−=∏ the potential 
energy and O the surface energy. 

Under consideration of the so-called “fixed-grips“ condition and with help of the stress and 
displacement field of Inglis (1913) [1] and by the vanish of the short axle of the ellipse he 
obtained following equation 
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where W0 is the strain energy without crack, EE' =  for plane stress, )1/(EE 2' ν−=  for plane 
strain, E is the elastic modulus and ν the Poisson’s Ratio. 

With Eq. (2.2) he got the energy release rate 
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The index I denotes the mode I and the factor 2 means the whole elliptical crack length. 
 

For the surface energy O he assumed the form 

γ= a4O ,      (2.4) 

where γ is the specific surface energy and should be a material constant. By substituting Eq. (2.3) 
and (2.4) into Eq. (2.1), the Eq. (2.1) becomes 

γ≥ 2GI .      (2.5) 

With this, he predicted that the unstable crack growth occurs when the equation (2.5) is fulfilled. 

 

From the Griffith's investigation it can be summarized: 

His study is based on a two-dimensional, infinite plate with an elliptic crack-like hole under 
mode I loading case. He established the global energy balance for the whole body and 
recognized that under the fixed grips condition the strain energy change could only be 
considered and a residual amount of the strain energy change has to be given in order to proceed 
with the crack. This residual amount of energy divided by the crack change must have the same 
size or is larger than the surface energy, which then can create the new surface. From this energy, 
he has introduced a well-known fracture mechanics quantity which is referred to as "energy 
release rate". 

It was unclear whether the Griffith's theory is applicable for general or complicated crack 
problems. 

 

2.2 Irwin's Work 
Irwin (1957, 1964) [3, 4] has attempted to answer the questions above. He extended Griffith's 
theory for mode I to mode II and III for linear elastic materials. Under consideration that the 
energy to close the crack (2.6) 
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has to be equal to the energy to extend the crack, he obtained a well-known equation 
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where ijσ  is the stress tensor, iu  the displacement vector and in  the normal on the crack front 

surface. 0)( refers to the state of the time t and 1)( the state of the time tt Δ+ , A1 is the crack 
front surface to the state of time tt Δ+ and IIIIII K,K,K are the stress intensity factors for mode I, 
mode II and mode III. 
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So, a connection between the global quantity "energy release rate" G and the crack front field 
"stress intensity factor" K was given. Nevertheless the problem is that the equation (2.6) includes 

1
j

1
i

0
ij nundu,σ  which refer to the different states of time. This makes the equation (2.6) difficult to 

use for complicated problems. 

 

2.3 The J-Integral 
The path-independent J-integral 

∫ σ−=
A

j1,iij1 dA)nuwn(J      (2.8) 

was introduced by Cherepanov (1967) [11] und Rice (1968a) [7] into the fracture mechanics to 
determine some specific problems. The J-integral is not only applicable to linear elastic material 
but also used for hyper-elastic material. Specifically, Rice (1968b) [8] and Budiansky and Rice 
(1973) [9] have derived the relationship 
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and by consideration of the traction-free crack surface the equation (2.9) is finally equal to the J-
integral 
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So the following Eq. (2.11) 
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is obtained, which is valid for linear elastic material, where w is the strain energy density, A0 the 
crack front surface to the state of time t, A the area refers to any path in body, ijσ  the stress 
tensor, iu  the displacement vector and in  the normal and 11, x/)()( ∂∂= . 

It is seen above that for linear elastic material, the J-integral is both equal to the Griffith's energy 
release rate Eq. (2.10) and supplies the same result as from the Eq. (2.7) provided by Irwin. It is 
also applicable to elastic-plastic material. Thus, the J-integral became important in fracture 
mechanics and particularly for elastic-plastic material. 

However, it can be recognized from the equations (2.6) and (2.8), that on the one hand the two 
equations Eq. (2.6) and Eq. (2.8) seem to be quite different, although they provide identical 
results (Eq. (2.7) and Eq. (2.11)), and on the other hand that the two integrals refer to different 
crack front surfaces, whereby the equation (2.6) to the crack front surface is linked to the time 

tt Δ+ , and the equation (2.8) is linked to the time t. 

Due to the different formulations of the above theories we can provide the following questions: 

• Do the Griffith's energy release rate G, the Irwin's I-integral expression of the crack 
closure energy and the Rice's J-integral really describe the same fact? 

• Is there a uniform rule from which the different equations as Eq. (2.6) and Eq. (2.8) can 
be derived? 

• Does new knowledge hide behind this difference? 

To answer these questions requires us to conduct a thorough analysis in the next chapter. 
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3. Uniform Formulations of the Energy Release Rate 

3.1 General Formulations 
Let us first consider the change of the potential energy in a cracked elastic body shown in Figure 
2(a), where the deformation of the crack front surface is adopted as shown in Figure 2(b), 

 
Fig. 2:   (a) a cracked body,   (b) the crack front field 
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In the above equation Π is the potential energy, W is the strain energy, w is the specific strain 
energy, U is the work done by the external force, ijσ  is the stress tensor, ijε  is the strain tensor, 

iu  is the displacement vector, it the force on the surface ts and V the volume, dt/d)( =
•

 is the 
material time derivative and t the time-like parameter. It follows 
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By looking at the first and the second term in the equation (3.2) and by the use of the Gaussian 
theorem, the terms cancel each other, so we get 
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This equation (3.3) is the basic equation from which we can derive different quantities. 

 

 

 

x1 

x2 

0ui =  

it auf ts  

V

A0 A1 
ΔV

(a) (b) 



6 

3.2 Conventional Derivation 
From the basic equation (3.3) Rice (1968b) [8], Eshelby (1970, 1956) [5, 6] and Budiansky & 
Rice received (1973) [9] a relation. For this, we give here the same formulation as by Budiansky 
& Rice (1973) [9] written: 
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where vi is the velocity and im  the normal outward. By substituting ikiv δ= , ii nm −=  

and
•

∏−≡ξk , we obtain 
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By consideration of traction-free crack surface it follows 

kk J=ξ       (3.6) 

and 
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where Eq. (3.6) is Eshelby's result [5] and kJ is the Integral derived by Knowles & Sternberg 
(1971/1972) [10] and with k = 1 kJ is the J-Integral 

.JJ1 =        (3.8) 

Thus, the connection between the kJ integral and the energy release rate has been established. 

 

3.3 A New and Generalized Way to Derive the Irwin's I-integral 
Let us now consider the specific strain energy w in Eq. (3.3) for linear elastic material 
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The term 2/ijij εΔσΔ  in the above equation has disappeared because of having an infinitesimal 
size of higher order. By substituting Eq. (3.9) into Eq. (3.3) and under consideration of the 
equilibrium condition 0j,ij =σ  and the traction-free crack surface as well as with help of the 
Gaussian theorem, it follows 
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In the Eq. (3.10) the expression ∫
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where M is a certain point in the volume VΔ . 
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By substituting
•

Π−=*I and ii nm −= and by replacing t with the actual crack length a into (3.10), 
we get the generalized equation 
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For a special case of j = 2 it follows 
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This is the Irwin's equation (2.6). 

In the equation (3.11) it is seen that they have the quantities 1
j

1
i

0
ij nandu,σ  which relate to the 

different times. As mentioned above, this leads to a difficult use of the equation (3.11) for 
complicated problems. 

 

4.  Separation of the Energy Release Rate and Introduction of Two New Quantities 

4.1 A New Vector Quantity Sk for Describing the Crack Front Extension 
The specific strain energy w in Eq. (3.3) for linear elastic material has an another form 
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The term 2/ijij εΔσΔ  in the above equation has also disappeared because of having an 
infinitesimal size of higher order. By substituting the Eq. (4.1) into Eq. (3.3) and by considering 
the equilibrium condition 0j,ij =σ  and the traction-free crack surface as well as by using the 
Gaussian theorem, it follows 
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In the Eq. (4.2) the expression ∫
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where M is a certain point in the volume VΔ . 

The equation (4.2) is new and will therefore be used furthermore to derive a new quantity. Now 
we consider the above equation (4.2) 
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Since t is a time-like parameter and can be replaced by the actual crack extension a for the quasi-
static problem, it follows with help of ii nm −=  and by use of the directional derivative 
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where kl is the direction vector of the crack extension. Now we get a new quantity, which is 
denoted with kS  

∫ σ=
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Then the Eq. (4.4) can be written as follows 
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By using the above equation (4.5) and by help of the Gaussian theorem as well as by considering 
0j,ij =σ  and 2/)uu( i,jj,iij +=ε , we can derive a path-independent integral by converting 
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where wc is the complementary energy density and B is an arbitrary closed area in the body. 
Since cww = for linear elastic material, it follows 
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Finally, we can form a new quantity 
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which always vanishes. By consideration of the traction-free crack surface and B=A+(-A0) we 
can then write 
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Based on the Griffith's energy release rate we have derived a new vector quantity Sk from the 
basic equation (3.3), which has an integral form (4.5). This integral is path-independent (4.9)  
and describes the crack front extension. 

However, it must be clearly stated that the two equations (3.11) and (4.4) are derived only under 
the condition that the deformation of the crack front surface is assumed as in Figure 2. Whether 
this assumption is true for the real deformation of the crack front surface has yet to be thoroughly 
analyzed and investigated. To answer this question we have to continue considering the basic 
equation (3.3) even more precisely. 

 

4.2  A Second New Vector Quantity Tk for Describing the Crack Front Distortion 
From the basic equation (3.3), we have handled the strain energy density and generated two 
important results: a) the first form (3.9) leads to a generalized Irwin's integral expression of crack 
closure energy, b) the second form (4.1) provides a new vector quantity Sk, which has an integral 
form, and this integral is path-independent. 

Now the question arises whether Sk is a single quantity which can be obtained from the basic 
equation (3.3) and what and where has not been taken into account. 

Therefore, we must again consider the basic equation (3.3) accurately. In the above consideration 
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we have tacitly assumed, that the volume fraction of ΔV is like in Figure 2, without analyzing it. 
To check whether this assumption for the deformation of the actual crack front surface is true, 
the deformation of the crack front surface must be again examined carefully. Let us now 
consider the body with cracks (Fig. 1) again. Under loading, the crack will extend and at the 
same time it will open, as shown below in Figure 3. As already known, only a small crack front 
surface will help for crack growth. Thus, the volume fraction ΔV must be included by surfaces 
A0, A1 and Aβ. Especially the surface Aβ describes the crack opening and this has been neglected 
until now. 

By using the Gaussian theorem the basic equation (3.3) can be written in the new volume 
fraction ΔV (Fig. 3) as follows 
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The first term of equation (4.10) has already been dealt above. The second term is new and we 
will study it more precisely now. By replacing the time t with the crack length a and by use of 
the Stockes's theorem, the second term can be reformulated as follows 

 
Fig. 3:  real deformation of the crack front surface 
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where kl  is the direction vector of the crack extension, ijkε is the alternative tensor and i∂ is the 
differential operator. Now we receive a second new quantity Tk 
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which describes the distortion of the crack front surface. 

It can easily be proved that the surface integral Tk above is path-independent by using the 
Gaussian theorem 
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• the new vector quantity Tk has an integral form, 

• it is path-independent, 

• it describes the distortion of the crack front surface. 

 

5. Two New Quantities Sk and Tk for Elastic-Plastic Material Behavior 
Now we will extend the new found quantities Sk and Tk for linear elastic material behavior into 
elastic-plastic material behavior with power law hardening. So let us write the strain energy 
density w for this material as follows 

ijij1n
nw εσ
+

≈ ,      (5.1) 

where n is the hardening parameter of material. In the above equation the part of elastic strain 
energy density is neglected, since the value of this part is very small in comparison with the 
plastic part.  

It is shown that the Eq. (5.1) is a more generalized form of the strain energy density, which is 
valid not only for elastic-plastic material behavior but with n=1 also valid for linear elastic 
material behavior. Therefore, we can derive some quantities for this material as done in the last 
chapter 3 and 4. 

In analogy to Eq. (3.11) we get the new generalized I*-integral for elastic-plastic material 
behavior 
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In the same way we can still receive in analogy to Eq. (4.10)  

∫∫ σ
+

−σ
+

=σ
+

=
A

jk,iijik,ij
A

jik,ijk dAn)u
1n

1u
1n

n(dAnu
1n

nS
0

   (5.3) 

and finally in analogy to Eq. (4.13) 
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The integrals of the new found quantities Sk and Tk in Eq. (5.3) and (5.4) for this material 
behavior are also path-independent. 

 

6. Crack Driving Energy and Crack Force  
In the above considerations, we have examined the basic equation (3.3) and could first derive the 
previously existing fracture mechanics parameters such as the generalized Irwin's I*-integral 
expression of the crack closure energy and the generalized Rice's Jk-integral. In particular we 
found the both new quantities Sk and Tk, where Sk describes the crack front extension and Tk the 
crack front distortion. Now, we can write the generalized energy release rate (4.11) as follows 

kkk l)TS(
da
d

+=
∏

− .     (6.1) 

By substituting kkk TSP += and by setting k = 1 for a special case "pure mode I", we obtain a 
very important result from the equation (6.1): 
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where G is the Griffith's energy release rate. This means: 

the energy release rate is separable and can be separated into two parts. 

By introduction of ∏−=FW  the equation (6.1) finally becomes 

kkF daPdW = ,       (6.3) 

where FW  is the crack driving energy. The equations (6.1) and (6.3) show that the change of the 
crack driving energy consists of two vector quantities kP and kda , whereby kda is the crack front 
deformation. Thus, the vector quantity kP contains the force character and is therefore identified 
as the whole crack force. Since kP = Sk + Tk, Sk or Tk represents a partial crack force. The energy 
balance of the cracked body can be reformulated as follows: 

0
da

dW
da
dW

da
dU F =−− ,     (6.4) 

where U is the work done by the external force, W is the strain energy and WF is the crack 
driving energy. 

 

 

5.  Summary and Conclusion 

The questions that we set at the beginning of the article, are already covered in detail and 
answered. The important results can be summarized as follows: 

• We have introduced a uniform equation (3.3) and derived the previously existing fracture 
mechanics parameters such as the generalized Irwin's I*-integral expression of the crack 
closure energy and the generalized Rice's Jk-integral from it,  

• based on the uniform equation (3.3), we have also found two new vector quantities Sk und Tk, 
which indicate that the energy release rate can be separated into the new found vector 
quantities Sk und Tk, where Sk provides the crack front extension, and the other Tk describes 
the crack front distortion, 

• the two vector quantities Sk and Tk are formulated in an integral form and are path-
independent, 

• it has also given that the new quantities Sk and Tk as well as the generalized Irwin's I*-
integral expression of the crack closure energy are not only valid for linear elastic material 
behaviour but also for elastic-plastic material behavior, 

• the two vector quantities Sk und Tk have the force character. So Sk is denoted as the partial 
crack force for crack front extension and Tk the partial force for crack front distortion. 
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