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Abstract  The energy approach is used to propose a model of arising of regular systems of cracks, 
emerging the surface of a circular cavity, being observed, for example, around oil and gas wells under 
uniform compression. The cracks are supposed to arise due to the accumulation of elastic compression 
energy in the system. The limit compression (the exhaustion of strength) being achieved, a network of cracks 
is formed in the most stressed layer adjacent to the interior of the body, thus utilizing the accumulated elastic 
energy of this layer. In this case, of all the possible grids the least energy-consuming one is formed, that is, 
the system with such a number n and length L of the cracks, that the energy needed for its creation is minimal. 
In the simplest scheme the number n of "petals"-wedges arising from the cracking turns out to be equal to 5 
(which corresponds to 2n = 10 cracks) and (contrary to limit compression pressure magnitude) be 
independent on geometrical and physical-mechanical parameters of the problem. 
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1. Introduction 
 
Around oil and gas wells under hydrostatic pressure [1, 2] (Fig. 1, 2) a pattern of regular cracks 
grids, emerging the surface of a circular cavity, is frequently observed. In the so-called 
«geoloosening» (directed layer unloading) method such systems are produced specially for 
increasing the rock fracturing and stimulation of oil input to the well [1, 2]. That is why it is 
important studying the structure of this crack networks, in particular, their number, length, etc.  
Regular systems of cracks are found in many structures and natural objects (examples and 
references see, eg, [3]). They may be initially due to both non-mechanical factors, such as thermal 
stress, the effect of aggressive media, phase transforms (drying, freezing [4]), etc., as well as have 
purely mechanical nature. Note that the problem of regular cracking of bark in technically 
elementary but quite substantial statement was considered in [5] already in 1952. Point also the 
paper [6], in which the formation of regular ordered crack systems was used to illustrate the 
capabilities of the variational principle of cracks mechanics there proposed. In [3] for the 
near-surface thermal cracks the formation of "nested doll" systems was studied, where a regular 
system of equal cracks turns into two analogous crack systems, each with its own size but double 
period with respect to the original system. Moreover, it was shown that, in some cases, the crack 
may develop by jumps, and in others, for subsurface cracks it turns out more profitable not to 
extend into the material, but curl and form spalling. In [7] issues of arising of ordered crack systems 
and/or crack-like defects under compression were briefly touched upon. In [8] development of 
regular systems of surface cracks under the thermal shock, and in [9] – multiple cracking of brittle 
coatings upon loaded solids was studied. In [10-12] an experimental study was performed, and a 
model was proposed on formation and evolution of cracks echelon in the vicinity of a main 
longitudinal shear elastic-brittle crack. In [13-16] distribution of fragments of glass after break by 
size and time was experimentally studied and theoretically treated using methods of the theory of 
fractals. 
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Fig. 1 [4, p. 33] Fig. 2 [4, p. 33] 
 
2. Statement of the problem on regular cracks grid around oil and gas wells 
 
In [17-20] the energy approach was used to propose a model of symmetric brittle crack formation in 
a thin plate (and a wedge) under bending by a point indenter. The main purpose of that idealized 
minimal model was to quantify the study of some possible mechanisms determining the number of 
the cracks arising. In this paper, similar approach is used to model the formation of a regular grid of 
cracks around a circular cavity under hydrostatic pressure [21-22]. The basic idea is that cracks are 
formed due to the accumulation in the system of elastic energy of compression (or rather, the shear 
energy). As the material strength is exhausted, in the most stressed layer, adjacent to the interior of 
the body, a regular network of cracks appears, which formation takes all the elastic energy of that 
layer. In this case, of all the possible grids the minimum-energy-consuming fracture scheme occurs, 
that is, a system with such a number n and length L of the cracks, that the energy needed for its 
creation, is minimal. 
Unlike the case of plate bending here cracks go from the surface of the hole not perpendicular to it, 
but at an acute angle (though not necessarily at 450, ie in the direction of slip lines). In other words, 
they are not tensile cracks, though perhaps not quite shear ones. More precisely, in [2, p. 21, 37-38] 
"usual for rocks Coulomb-Mohr type criterion, according to which the failure on these planes 
occurs when the shear stress achieves some limit value [τ] = k – σntg ρ, where k and ρ are cohesion 
modulus and internal friction angle of rock respectively, which are the strength characteristics of the 
rock" is taken as a failure criterion. Aimed to clarify the fundamental possibility of constructing a 
simple model of cracks ordered systems of such type and calculation of cracks number, as well as 
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maximum simplification of the problem and using the features of its stress-strain state, we assume 
that the cracks propagate along the slip lines, and their formation is due to stored elastic energy, but 
not all, but only the shear energy, the energy of hydrostatic compression being not taken into 
account  
So, the model is based on the following provisions: 
I. Suppose we have an infinite plane with a circular cavity in a uniform compression, stress-strain 
state is plane. 
II. As the material strength is exhausted, fracture occurs instantaneously with the formation of a 
symmetric system of shear cracks. 
III. Cracks occur along the slip lines, forming a regular pattern like Fig. 1-3. 
IV. One can neglect the irreversible (inelastic, heat, etc.) losses (plate behaves quasi-brittle), and 
possible dynamics (waves). 
V. Energy balance equation expresses the equality of the energy of formation of new surfaces 
(cracks) to the elastic energy of shear, released from the ring (layer), which was cut through with 
those cracks. 
VI. The minimum-energy-consuming fracture scheme occurs, i.e., the scheme with such a number n 
and length L of the cracks, that the energy needed for its creation, is minimal. 

 

Fig. 3 [24, p. 326] 
 
The proposed scheme can essentially be considered as a version of that classical approach by 
Griffith [23], adopted for cases where the problem symmetry requires the hypothesis on occurrence 
of one crack to be replaced with the assumption of arising a symmetrical system with n cracks.  
 
3. Crack creation energy 
 
To formalize the above speculations we write according to the condition «V» the basic equation of 
energy balance 
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 W = We (1) 
 
where W, We are the energy of formation of new surfaces (shear cracks) and elastic energy gone to 
it of the layer, weakened (destroyed) by the cracks net arised, respectively. 
Somewhat roughenning the real situation, we assume that the fracture pattern is axially periodic  

 

Fig. 4 Fig. 5 [24, p. 326] 
 
(Fig. 4) and is built of n «petals", each seen from the center of the cavity at an angle 2φn and formed 
by a couple of cracks emanating from the surface of the cavity at an angle of 450 and directed to 
each other 
 
 2φn = 2π/n, φn = π/n (2) 
 
The energy of formation of new surfaces (shear cracks) 
 
 W = γL = γ·2nΛ (3) 
 
where γ is corresponding effective (specific) surface fracture energy (or more precisely, the specific 
energy of cracking, since there are two surfaces but one crack), L – total length of all the cracks, n – 
number of petals-sectors formed (2n cracks), Λ – the length of a crack. 
Taking that fracture occurs along the slip lines and the cracks grid forms a regular pattern like Fig. 4, 
calculate the total length of cracks 

 ∫
π

=ϕ

=ϕ

⋅⋅=Λ=
n

dSnnL
0

22  (4) 

where n is the number of pieces (wedges), cut out by the cracks, φ – polar coordinate, dS – 
differential of arc length along the crack. 
As is known, the direction of the maximum shear stresses divides the angles between the principal 
axes of the stress tensor in two [25, p. 265]. Circular cavity considered is a special case of a tube 
with an infinite outer radius. The principal stresses in the cross section of the tube are directed 
radially and circumferentially, the slip lines being inclined to these directions at an angle 450 (Fig. 
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5). From this figure we see that 
 dR = ±Rdφ (5) 
 
where R and φ are polar coordinates. This equation gives two orthogonal families of slip lines 
 
 R(φ) = Ce±ϕ;    R|φ=0 = R* = C,    R(φ) = R*e±ϕ (6) 
 
where C is the integration constant, R* – the radius of the hole. Taking R* and 
 W* = 2 2 πγR*, (7) 
 
as the length and energy reference scales, respectively, pass on to dimensionless variables r, λ, l, w 
by the formulas 
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 R = R*r,    Λ = R*λ,    L = R*l,    W = W*w (9) 
 
Then (6) takes the form r(φ) = e±ϕ, and choosing to be definite one of the branches (families) with 
the sign +, we obtain the dimensionless radial coordinate of the "petal"-wedge end rn 

 
 rn = r(φn) = |(2)| = r(π/n) = eπ/n,    n = π/lnrn (10) 
 
Writing now the expression for the differential of arc length in polar coordinates, expressing φ in R 
using (5) and integrating over the entire crack length, we find the length of one crack Λ, λ and the 
total dimensionless length of all the cracks l 
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For the dimensionless cracking energy with (8), (3), (11) we have 
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A plot of the dimensionless cracking energy w on rn is represented by the upper curve (almost 
straight) in Fig. 6. It is the function defined for rn ≥ 1, monotonically increasing, concave upwards 
and equal to 1 for rn = 1.  
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Fig. 6. 
 
4. The elastic energy 
 
Now we write the expression for the right hand side of (1) – elastic energy We, stored in the 
near-well layer, cut through with the cracks, which goes to the formation of cracks 
 

 RdRWWW
nR

fsfe π== ∫ 2
1

 

  
where Wf is shear energy, Wfs (s = specific) – specific shear energy, and the integration is over the 
ring R ∈ [1, Rn]. According to [25, p. 284, formula (7.28)], the expression for the specific shear 
energy can be written as 
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where μ is Poisson's ratio, E – Young's modulus, σ1,2,3 – principal stresses. 
Substituting for the right side of (14) the well-known Lame solution for the very thick cylinder with 
inner radius R*, being under internal pressure P [25, p. 338-339, formula (9.21)] 
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we obtain for the specific Wfs and entire Wf shear energy in the ring (layer) r ∈ [1, rn] 
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Going from P and Wf with the aid of scales of pressure E and energy 
 
 ( ) 2*1** ERW μ+π≡  (17) 
 
respectively, to dimensionless p and wf by formulas 
 

 ff
f

f wWWpEP
W
W

w
E
Pp **,,

**
, ====  (18) 

 
we obtain for the dimensionless energy wf 
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The formula (19) determines for rn ≥ 1 monotonically increasing function, concave upwards, equal 
to 0 for rn = 1 and getting onto a horizontal asymptote at rn → ∞ . The graphs of this function for 
two values of p are shown in Fig. 6 by two lower curves 
. 
5. Calculation of the index n 
 
For small internal pressures p shear energy plot wf(rn) lies below the cracking energy plot w(rn). The 
pressure arising, the in-tube stored elastic energy increases monotonically, the plot wf(rn) goes 
higher and at some moment it touches the graph w(rn) for some rn. The moment of contact will be 
the first moment when the elastic energy be equal to the energy required for the formation of an 
appropriate system of cracks (see similar arguments in Mohr theory [25, § 61, p. 300-306]). 
Touching specifies two conditions (equality of functions and equality of their derivatives) to 
determine two unknowns: the pressure and the thickness of the elastic layer, which gives its elastic 
energy for cracking. 
From the condition of equality of functions, by substituting into (1) the expressions (7), (13), (17), 
(19), we obtain 
 
 W = W*w = Wf = W**wf (20) 
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or, setting the dimensionless constant 
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Tangency condition we obtain by differentiating (23) 
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Dividing (231) to (241), we obtain governing equations for rn 
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Equation (26) for rn is transcendental and needs numerical solution, but it can be seen that its root is 
close to e, therefore, representing rn in (26) as rn = e(1 + ε), expanding in powers of ε and holding 
the first order, one can obtain simple approximate estimates for ε, rn and n 
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It is seen, that the value for n obtained is a fractional number. For the model assumed it means that 
the solution will be one of the two integers closest to the fractional value found (ie, either 4 or 5), 
which gives a lower value for the elastic energy. Those integer solutions n appear with changing 
We(p) on increasing p, which, as is clear from Fig. 6, leads to the splitting of the solution found 
above into two solutions (corresponding to one and the same p), one of which, as can be seen from 
the graphs in Fig. 6, crawls down (rn1 ↓), and the other – up (rn2 ↑). By (13) w(rn) = (rn – 1)/lnrn is a 
monotonically increasing function (↑), ie rn1 <rn2 ⇒  w(rn1) <w(rn2); vice versa, n(rn) decreases 
monotonically (by (10): n = π /lnrn ↓). The lower elastic energy corresponds to the lower value of rn 
and, accordingly, to the larger value of n. Consequently, nmin = 5. Here, with the growth of p the 
total stored elastic energy in the body increases, but cracking consumes less energy due to the fact 
that though the number n of cracks increases, but because of the reduction in rn their total length l in 
(12) becomes less. 
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6. CONCLUSIONS 
 
The energy approach is used to propose a model of arising of regular systems of cracks, emerging 
the surface of a circular cavity, being observed, for example, around oil and gas wells under 
uniform compression. The cracks are supposed to arise due to the accumulation of elastic 
compression energy in the system. The limit compression (the exhaustion of strength) being 
achieved, a network of cracks is formed in the most stressed layer adjacent to the interior of the 
body, thus utilizing the accumulated elastic energy of this layer. In this case, of all the possible grids 
the least energy-consuming one is formed, that is, the system with such a number n and length L of 
the cracks, that the energy needed for its creation is minimal. In the simplest scheme the number n 
of "petals"-wedges arising from the cracking turns out to be equal to 5 (which corresponds to 2n = 
10 cracks) and (contrary to limit compression pressure magnitude) be independent on geometrical 
and physical-mechanical parameters of the problem. The approach presented can be obviously 
formalized in the form of a corresponding variational principle of E.M. Morozov type [5, p. 11-24], 
provided that the core of the functional there introduced, would be modified appropriately and will 
be proportional not to the maximum normal stress or the maximum linear strain (similar to the first 
and second strength theories [5, p. 12]), but to the value, corresponding to the failure criterion here 
adopted. 
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