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Abstract   
The paper deals with the dynamic crack growth and arrest in an elastic DCB specimen, idealized by a 

Bernoulli-Euler beam. The surface energy of the material is 12Γ  and the initial crack is blunted with the 

energy 0 12 2Γ > Γ . The crack is then pushed ahead while the loading is frozen, the crack velocity and arrest 

length depending on the ratio 0 1/R = Γ Γ . The analytical approach used to investigate the beam behaviour 

and the crack growth, is based on the Hamilton’s principle of stationary action, considering an approximate 
equation of motion, based on a N  modes decomposition of the beam deflection . This process leads to a set 
of N second order differential equations where the unknowns are the mode amplitudes and their derivatives, 

coupled to a single equation exhibiting the current crack length ( )tl , velocity ( )t&l  and acceleration ( )t&&l . 

The results concerning the crack kinematics, particularly the arrest length, are in good accordance with those 
obtained by a Finite Element Model associated to a cohesive zone model.  
The method is then applied to a material with heterogeneous fracture properties, in particular with a 
distribution of small brittle flaws perturbating the crack kinematics. This method allows a large range of 
configurations with a low computational time.  
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1. Introduction 
The double cantilever beam (DCB) specimen is widely used for crack arrest investigations, and its 
geometry is suitable for one-dimensional analysis models. For dynamic crack growth in a finite 
solid, analytical solutions are uncommon. The first quantitative prediction for the kinematics of a 
fast propagating crack, using an energy balance, is due to Mott [1]. Whereas crack propagation 
problems with transient motion are often achieved only with Finite Element Models, some 
analytical procedures are available for one dimensional models as DCB specimens. We focus here 
on a bimaterial DCB specimen, with a high toughness part where the initial crack is blunted, welded 
to a low toughness section where the crack enters with a high velocity. Transient kinetic analyses 
may be also achieved with some analytical methods, such hyperbolic equations solved by a finite 
difference scheme applied to characteristic lines [2,3]. An original analytical way, based on solving 
Lagrange’s equation of a DCB specimen motion, considered as a Bernoulli-Euler beam, has been 
initiated by Burns and Webb [4], assuming a special form of the kinetic energy corresponding to a 
specific constant loading rate. Freund [5] has extended this approach for a general loading, 
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suggesting a modal decomposition, but limiting his work to the mode 0N = . It is suggested here to 
extend the modal analysis to higher vibration modes to investigate the dynamic crack growth and 
arrest in a DCB specimen.  

 

2. The Bernoulli beam model applied to a duplex DCB.  
 

An elastic Double Cantilever Beam specimen is illustrated in the figure 1. The specimen arms are 

slowly prescribed to a monotonic opening displacement 0 ( )W t  which gives rise to a quasi-static 

mode I crack growth (denoted by the current value 0 c≤ <l l l ) in a first part of the beam, made up 

of a 02Γ  surface energy material. A second material with a lower toughness, denoted the test 

section, is welded to the first one (the corresponding surface energy is 1 02 2Γ < Γ ). When the crack 

tip reaches the critical point corresponding to the sections interface ( cx = l ) where the toughness 

jump occurs, its rapidly runs throughout the test section, while the loading is frozen. The crack 

velocity &l  (and the arrest length Al ) in this test section, is governed by the surface energy ratio of 

the two sections ( 0 1/ , 1R R= Γ Γ > ). We investigate here the crack kinematics during this stage, 

including the crack arrest c Ax≤ ≤l l , with the assumption of a straight crack path, without any 

branching or kinking. 
 
 
 
 
 
 
 

 
 
 
 

Figure 1 Crack growth and arrest in a bimaterial DCB specimen. 

Only half of the specimen, and then half of the surface energy ( 0 1,Γ Γ ) are considered here. A 

Bernoulli-Euler model is assumed to model the beam (the ratio / ch l  is considered small enough 
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to bear out a classical beam theory). Therefore, the motion only exhibits the scalar beam deflection 
( , )w x t . The general differential motion equation, associated with the boundary conditions may be 

written as follows, 0, a∀ ≤ ≤l l l l  : 
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where , , ,E I A ρ  are respectively the elastic modulus, the area moment of inertia of the beam cross 
section, the area of this section, and the mass density of the material. 
As the dynamic stage is the only one which matters, the initial conditions will refer to the crack 

running onset time when ( 0) ct = =l l , so that the quasi-static growth stage ( [ ]0 0, ct x< ∈ l ) is 

disregarded here. 

3. Approximate equation of the DCB motion by modal decomposition 
 

3.1. Approximate equation of motion. 
 
It is supposed, as already suggested by Freund [5], that the deflection of the beam is given by the 
following approximation : 

( ) ( ) ( ) ( ) ( ) ( )ˆ( ), , , 1,stat stat
i iw X t t w X w X t w X a t X i Nφ= + = + = (2) 

 
where the Einstein summation convention is henceforth adopted, from now on. The new variable 

[ ]/ , 0,1X x X= ∈l  is the normalized beam coordinate, useful in the case of a growing crack, such 

that the moving integration domain [ ]0, ( )tl  is replaced by the stationary reference domain 

[ ]0,1 , ( )t∀l . ( )statw X  is the quasi-static deflection solution, ( )ˆ ,w X t  the perturbation around the 

equilibrium solution, iφ
 
the i th normal mode shape for free vibration of the beam, and ia the 

unknown deflection amplitude associated to iφ . 

The homogeneous boundary conditions associated to the free vibration of the beam are derived 
from (1) : 
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3.2. Free vibration mode shape. 

 

An harmonic motion for the free vibration mode is assumed : 

( ) ( ) ( )ˆ , sin , 1,i iw X t X t i Nφ ω θ= + =  (4), 

where iω  is the angular frequency associated to the mode iφ , θ  the phase angle. 

The motion equation may be written as : 
 

[ ]
4 2

(4) 4 4( ) ( ), , 1, , 0,1 , i
i i i i

AX X i i N X
EI

ρ ωφ μ φ μ= ∀ = ∀ ∈ =
l

 

(5) 

The general solution of (10) is :  

( ) ( ) ( )
( ) ( )i

i i i
i

cos
X sin X sh X

sh
μ

φ μ μ
μ

⎡ ⎤
= −⎢ ⎥
⎣ ⎦  

(6)
  

and each angular frequency is given by the following equation: 
 

( ) ( ) , , 1,i itg th i i Nμ μ= ∀ =   
(7)

 

4. Hamilton’s principle applied to a domain with a moving crack. 
 

Hamilton’s principle of stationary action is widely used in classical mechanics [6]. It postulates that 
the dynamics of a system is governed by a variational problem for a functional integrating the 
Lagrangian function, which contains some information about the energy of the system and the 
forces acting on it. It is the weak form of the differential equations of motion of the system. 

4.1. General Hamilton’s principle applied to a system described by a discrete set of 
degrees of freedom.  

 
Let us recall the outlines of the principle for a system described by the generalized coordinates 

( ) , 1,iq i N= , in a formal way. Hamilton’s principle states that the true evolution of ( )iq  along a 

path γ between two mechanical states at time 0t and 1t  is a stationary point of the action 

functional : 1

0

( ) ( , , )
t

i it
q q t dtϕ γ = ∫ &L (8), where ( , , )i iq q t&L is the Lagrangian function of the system. 

This principle involves the following system of N
 
Euler-Lagrange equations [6] : 
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Let us introduce the Hamiltonian function as the Legendre transform of the Lagrangian function : 

( , , ) ( , , ), 1i i i i i iq p t p q q q t i N= − ≤ ≤& &H L (10) 

with i
i

p
q
∂

=
∂&
L

 . The following relations : 

,i i
i i

p q
q p

∂ ∂
= − =

∂ ∂
& &H H

(11) 

are called Hamilton’s equations. The system of Euler-Lagrange’s equations (14) is equivalent to the 
Hamilton’s equations (16) (under some assumptions). 

 

4.2. Application to the DCB specimen.  
 

These previous considerations are very formal and general. They can be applied to an 

elastodynamic system such our model, considering that , 11, ,i i Nq a i N q += = = l . Therefore, the 

Lagrangian is : 

( ) ( ) ( )
0

, , , , , , , ( ) , 1,i i i i ia a K a a U a x dx i N= − − Γ =∫
l& && &l l l l lL

   
(12) 

and the Euler-Lagrange equations become : 

 
 

( ) ( ) 0, ,1
i i

K U K Ud i i N
dt a a

∂ − ∂ −⎛ ⎞
− = ∀ ≤ ≤⎜ ⎟∂ ∂⎝ ⎠&  

(13) 

( ) ( ) ( ) 0,
K U K Ud

dt
∂ − ∂ −⎛ ⎞

− +Γ =⎜ ⎟∂ ∂⎝ ⎠
l&l l

(14) 

which are respectively the local motion equations similar to equ. (1) for each eigenmode and the 
expression of the energy release rate. Using the Legendre transform of L  , the following relation 
holds : 

( ) ( ) ( )
0

, , , , , , , ( ) , 1,i i i i ia a K a a U a x dx i N= + + Γ =∫
l& && &l l l l lH  (15) 

Thus, the Hamiltonian is the total energy of the beam. Furthermore, since the Lagrangian equations 
are fulfilled, the energy balance is fulfilled. Starting from now, the complete solution of the 
dynamic crack growth problem in the DCB is restricted to the determination of the time dependent 

variables ( ), ( )ia t tl  
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5. Setting up the equations system, starting from the Hamilton’s principle. 
 

The relations (13) associated to the modal decomposition lead to the following second order 
ordinary differential system of N equations, describing the beam motion :  

( ) ( )
2

4
3 4 4 2 12 4

2 1 , 1,i ij ij i ij
i j j j i i

EIa C a C a C C a C a i N
A

μ
ρ

= + + + + − ∀ =
&& & &l l l&& &
l l l l

(16) 

where ( , , , 1,i i ia a a i N=& && ) are the unknowns and ( , ,&&&l l l ) the equation parameters. The coefficients 

( )1 2 3 4, , ,ij i i ijC C C C  depend on the mode shape of the beam, and iμ  corresponds to the angular 

frequency computed with the relation (7). The relation (14) leads to the single equation, describing 
the crack kinematics (where the summation convention holds) : 

( ) ( )
2

2 2 4 1
2 1 3 43

32 2 3( )
2 2 2

j ij c i ij
j j i i i i i j

EIa C a a C w a a C a a C
A A

μ
ρ ρ

⎛ ⎞Γ
= + − − + + + + −⎜ ⎟Δ Δ Δ ⎝ ⎠

& &l l l&& & & && &&l
l l

(17) 

with 
2

1 2
6( ) 2

35

c
ij i

i j i
w a a C a CΔ = + +  and ( , ,&&&l l l ) are the unknowns and ( , , , 1,i i ia a a i N=& && ) the 

equation parameters. It is important to point out that the above coupled system does not take into 
account two features : the irreversibility of the crack growth ( 0≥&l ) and the non overlap of the 

crack lips ( ( ), 0w x t ≥ ), involving constraints on the amplitudes ia , are not considered. This lack in 

the model will not affect the results in most of the cases as we will see in the next sections. 

6. Application to an homogeneous test material 

6.1. Number of modes influence. 
 

The surface energy ratio is 3R = . From 3N = , the crack growth solution convergence may be 
considered as correct (with some oscillations, related to the propagation reversibility, see fig. 2).  
 

 

 

 
 
 
 
 

 
 
 

Fig. 2. Crack kinematics for a modal decomposition up to 5 modes (R=3). 
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The crack arrest point arises as soon as the solution globally decreases.  
 

6.2. Comparison with a cohesive zone model. 
 

Our method has been compared with a cohesive zone model with a sufficiently small cohesive zone, 
to be close to the Griffith model [7] . Furthermore, this cohesive model is applied to a plane strain 
behavior while the present method uses a beam model. The comparative results from the present 
model and the cohesive model for 3R =

 
are illustrated on the figures 3 and 4. 

 
The results (for 

N=4) are in a good accordance. The crack arrest takes place when the kinetic energy reaches its 
minimum, before a second bounce, which corresponds to the beam vibration at the end of the crack 
propagation.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3. Comparative analysis with a cohesive zone model :Crack kinematics versus time for R=3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Comparative analysis with a cohesive zone model :Kinetic energy versus time for R=3. 
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7. Application to materials with heterogeneous toughness . 
 

The case of heterogeneous fracture properties is investigated, in particular when one single flaw 
may upset the crack kinematics. If the flaw is weaker than the safe material, the crack may jump 
over it. This phenomenon, called “pop-in” [8] is investigated here with the following parameters : 
the flaw position, and its toughness. Conversely, tougher inclusions inside the test material may 
slow down or stop the crack, or reduce the crack arrest length. 

7.1. One single weak flaw ahead the initial crack tip. 
In a first case, a e  length single flaw, located just ahead the initial crack tip, is considered (see fig. 

5). The flaw toughness value is 1 0 / RΓ = Γ  and the material recovers its original toughness 

0Γ beyond the flaw. The aim is to check if the crack will stop just after the flaw or deeper in the 

original material, and in this latter case, which is the arrest length, depending of e  and R .  
 
 
 
 
 
 

Fig. 5. One single weak inclusion ahead the initial crack tip in the test material. 
The figure 6 displays the ratio crack arrest length over flaw length, versus the ratio flaw length over 

initial crack length, for a range of 1.5 4R< < . It is noteworthy that for 00.2 / 0.4e L≤ ≤  (this 

range of 0/e L  and R  is usual for industrial components, the crack arrest occurs around the flaw 

tip, and the crack does not deeply penetrate inside the safe material. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Crack arrest length on flaw length, versus flaw length on initial crack length. 
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7.2. One single tough flaw ahead the initial crack tip. 
 
 
 
 
 
 
 
 

Fig. 7. One single tough inclusion in the test material. 
 

On the contrary, a tough e  length flaw ( 2 0Γ ≥ Γ ) is embedded in the regular test material 

( 1 0 / RΓ = Γ , with the fixed value 3R = ), at a distance d  ahead the initial crack tip (fig. 7). The 

influence of the flaw features d , e  and 2Γ on the crack kinematics is investigated. If the flaw is 

sufficiently long (in our specific case 0/ 6%e >l , see fig.8), the crack is immediately stopped 

inside the flaw. In the other hand where 0/ 1%e <l the crack kinematics is very close to that 

without flaw. In the intermediate situations, a transient crack arrest takes place in the flaw (the 
longer the flaw, the longer the transient arrest time), followed by a crack restart with either a 

reduced final crack arrest ( for 0/ 5%e =l ) or a regular one ( for 0/ 3%e =l ).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Influence of the flaw length. 
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8. Conclusions and outlines. 
The complete dynamic crack kinematics is described from the Hamiltonian variational formulation 
associated to a modal decomposition. It is correctly described in a swift time, compared to the 
prediction of more heavy FE methods, even for a small number of modes (in many cases, three 
modes are sufficient, for a few seconds of computational time). The method has been also applied to 
a material, embedding some flaws with heterogeneous fracture properties. The crack kinematics, 
including the crack arrest, is very sensitive to the flaw position and toughness. The main drawback 
of our method is the non account of the crack growth irreversibility, which leads to small stages 
with negative crack velocities instead transient crack arrest, but without significant consequence on 
the results fairness. This disadvantage may be circumvented, adding the constraint inequality 0≥&l  
in the motion equations, but with probably an increase in the computational cost. An extension of 
this method to a beam with variable section geometry (tapered DCB), a complex toughness 
distribution, is straightforward. On the other hand, some developments concerning the material 
behaviour such as the viscosity or plasticity, or the application to bidimensionnal geometries are 
possible but more ticklish. 
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