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Abstract  A new finite element has been implemented to incorporate the extended finite element method 
(XFEM) for the solution of hydraulic fracture problems. The proposed element includes the desired aspects 
of the XFEM so as to model crack propagation without explicit remeshing. In addition, the fluid pressure 
degrees of freedom have been defined on the element to describe the fluid flow within the crack and its 
contribution to the crack deformation. Thus the fluid flow within the crack and crack propagation are fully 
coupled in a natural way and are solved simultaneously. Verification of the proposed element has been 
conducted by comparing the finite element results with the analytical solutions available in the literature. 
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1. Introduction 
 
Hydraulic fracturing is a powerful technology for enhancing conventional petroleum production. It 
is playing a central role in fast growing development of unconventional gas and geothermal energy. 
The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to 
understand the complex, multiscale mechanics of hydraulic fracturing, to the efficient application of 
this technology, and to develop innovative, advanced hydraulic fracturing technologies for 
unconventional gas production. The accurate numerical simulation of hydraulic fracture growth 
remains a significant challenge because of the strong nonlinear coupling between the viscous flow 
of fluid inside the fracture and fracture propagation (a moving boundary), complicated by the need 
to consider interactions with existing natural fractures and with rock layers with different properties. 
 
Great effort has been devoted to the numerical simulation of hydraulic fractures with the first 3-D 
modeling efforts starting in the late 1970s [1-2]. Significant progress has been made in developing 
2-D and 3-D numerical hydraulic fracture models [3-15]. Boundary integral equation methods or 
displacement discontinuity techniques have generally been employed to investigate the propagation 
of simple hydraulic fractures such as penny-shaped or plane-strain fractures in a homogeneous, 
infinite or semi-infinite elastic medium where the appropriate fundamental solutions are available. 
The finite element method has been used and is particularly useful in modelling the hydraulic 
fracture propagation in inhomogeneous rocks which may include nonlinear mechanical properties 
and may be subject to complex boundary conditions. The finite element model is also able to 
investigate the propagation of hydraulic fractures in infinite or semi-infinite medium by using 
infinite elements or appropriate analytical solutions to efficiently approximate the far-field 
boundary [15]. However, the standard finite element model requires remeshing after every crack 
propagation step and the mesh has to conform exactly to the fracture geometry as the fracture 
propagates, and thus is computationally expensive.  
 
By adding special enriched shape functions in conjunction with additional degrees of freedom to the 
standard finite element approximation within the framework of partition of unity, the extended finite 
element method [16-17] (XFEM) overcomes the inherent drawbacks associated with use of the 
conventional finite element methods and enables the crack to be represented without explicitly 
meshing crack surfaces, and so the crack geometry is completely independent of the mesh and 
remeshing is not required, allowing for the convenient simulation of the fracture propagation. The 
XFEM has been employed to investigate the hydraulic fracture problems [18-19]. 
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In this paper, we explore the application of the extended finite element method to hydraulic fracture 
problems. By taking good advantage of the XFEM and the flexible functionality of user subroutines 
provided in ABAQUS [20], a user-defined 2-D quadrilateral plane strain element has been coded in 
Fortran to incorporate the extended finite element capabilities in 2-D hydraulic fracture problems. 
The user-defined element includes the desired aspects of the XFEM so as to model crack 
propagation without explicit remeshing. In addition, the extended fluid pressure degrees of freedom 
are assigned to the appropriate nodes of the proposed elements in order to describe the viscous flow 
of fluid inside the crack and its contribution to the coupled crack deformation. 
 
2. Problem formulation 
 
2.1. Problem definition 
 

 
Figure 1. A two-dimensional domain containing a hydraulic fracture 

 
Consider a two-dimensional hydraulically driven fracture cΓ  propagating in a homogeneous, 

isotropic, linear elastic, impermeable medium Ω  under plane strain conditions, see Figure 1. The 
boundary of the domain consists of FΓ  on which prescribed tractions F , are imposed, uΓ  on 

which prescribed displacements (assumed to be zero for simplicity) are imposed, and crack faces 

cΓ  subject to fluid pressure. The fracture propagation is driven by injection of an incompressible 

Newtonian fluid at constant volumetric rate 0Q  at a fixed injection point. It is assumed that the 

fracture propagation is quasi-static, and that the fracture is completely filled with the injected fluid, 
i.e., there is no lag between the fluid front and the fracture tip. The solution of the problem consists 
of determining the evolution of the fracture length, as well as the fracture opening, the fluid 
pressure, and the deformations and stresses inside the domain as functions of both position and 
time. 
 
2.2 Governing equations 
 
The stress field inside the domain, σ , is related to the external loading F  and the fluid pressure 
p  through the equilibrium equations: 
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where n  is the unit normal vector. 
 
The kinematic equations include the strain-displacement relationship, the prescribed displacement 
boundary conditions and the definition of the separation between the two surfaces of the crack. 
Under the assumptions of small strains and displacements, the kinematic equations read 
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where u  is the displacement, w  is the separation between the two faces of the crack, and ε  is 
the strain. 
 
The stress field insider the domain is expressed in terms of the isotropic, linear elastic constitutive 
law as: 

:σ D ε                                                  (3) 
where D  is Hooke’s tensor.  
 

 
Figure 2. Fluid flow within crack 

 
The fluid flow within the crack is modelled using lubrication theory, given by Poiseuille’s law 
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where   is the dynamic viscosity of the fracturing fluid, q , the flow rate inside the crack per unit 
extend of the crack in the direction of x , is equal to the average velocity v  times the crack 
opening w  (see Figure 2), i.e., 

     xwxvxq                                             (5) 
The fracturing fluid is considered to be incompressible, so the mass conservation equation for the 
fluid may be expressed as 

0
w q

g
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                                           (6) 

where the flux discontinuity  xg  is taken as positive if fluid is leaving the fracture. It can be 
interpreted as a source density outside the fracture, which accounts for fluid exchange between the 
fracture and the surrounding medium (e.g. porous rock). 
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Substituting of Eq. (4) into Eq. (6) leads to the governing equation for the fluid flow within the 
fracture 

0
w p

k g
t x x

         
                                    (7) 

where 3 12k w   is the permeability. The general form of the governing equation (Eq. (7)) may 
be expressed as 

 T 0w p g   k                                      (8) 

where k  is the permeability tensor. 
 
According to linear elastic fracture mechanics, the criterion that the fracture propagates 
continuously in mobile equilibrium (quasi-static) takes the form 

I IcK K                                                (9) 

where IK  is the mode I stress intensity factor and IcK  the material fracture toughness. 

 
At the inlet, the fluid flux is equal to the injection rate, i.e.,  

0inlet
q Q                                              (10) 

At the tip, the boundary conditions are given by the zero fracture opening and zero flow conditions,  

tip tip
0w q                                            (11) 

The above equations constitute the complete formulation that can be used to predict the evolution of 
the hydraulic fracture. 
 
3. Weak form and FEM discretization 
 
The weak form of the equilibrium equation is given by 

 T T T T T 0
t c cc c c cdΩ dΩ dΓ dΓ dΓ     

   
            ε σ u b u t u p u p         (12) 

where b  is the body force, t  is the applied traction on the boundary tΓ , u  is an arbitrary 

virtual displacement and  ε  is the corresponding virtual strain, which is related to u  through 
the strain operator S  as  ε S u . 
 
For the fluid pressure on the crack surfaces, we define 

c c c c cp p p         p p p n n n .                                (13) 

The crack opening displacement w  is given by 

 T
c c cw    n u u , or  c c c c

    w n u u n .                          (14) 

Then the weak from of the equilibrium equation can be expressed in a more compact form as 
T T T T 0

t c
dΩ dΩ dΓ dΓ            ε σ u b u t w p .                 (15) 

The weak form of the governing equation for the fluid flow within the fracture can be written as 

 T T 0
c

p w p g dΓ


      k                                  (16) 

which, after integration by parts and substitution of the boundary conditions describe above, yields 

 T T T 0
c c c

p wdΓ p pdΓ p gdΓ  
  

        k                   (17) 

 
Consider the coupled problem discretized in the standard (displacement) manner with the 
displacement vector u  approximated as 
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ˆ
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u u
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i

   u u N u N u , u u N u                               (18) 

and the fluid pressure p  similarly approximated by 

1

ˆ
n

p p
i i

i

p p N p


   N p , pp  N p                               (19) 

where iu  and ip  are the nodal displacement and pressure, u
iN  and p

iN  are corresponding 

nodal displacement and fluid pressure shape functions. 
 
The crack opening displacement w  is approximated by 

1

ˆ
n

w w
i i

i

   w w N u N u , w w N u                               (20) 

where w
iN  are the appropriate crack opening displacement shape function. It will be shown later 

that the shape function w
iN  can be expressed in terms of the displacement shape functions u

iN  

according to the relationship Eq. (14). 
 
Substitution of the displacement and pressure approximations (Eqs. (18) - (20)) and the constitutive 
equation (Eq. (3)) into Eq. (15) yields a system of algebraic equations for the discrete structural 
problem 

u   0 Ku Qp f                                                (21) 
where  

T d


 K B DB ,    T T

t

u u ud dΓ   f N b N t ,  T

c

w pdΓ Q N nN         (22) 

 
By substituting Eqs. (19) and (20) into Eq. (17), the standard discretization applied to the weak 
form of the fluid flow equation leads to a system of algebraic equations for the discrete fluid flow 
problem 

p   0 Cu Hp f                                                (23) 
where  

         TT T

c

p wdΓ


  C Q N n N ,  T

c
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c

p p gdΓ f N      

(24) 
 
Then, the discrete governing equations for the coupled fluid-fracture problem can be expressed in 
matrix form as: 

u

p

        
        

        

 
 

0 0 K -Q u fu

C 0 0 H p fp
                              (25) 

The above equations form the basis for the construction of a finite element which couples the fluid 
flow within the crack and crack propagation. 
 
4. The extended finite element method and element implementation 
 
4.1 Extended finite element approximation 
 
By adding special enriched shape functions in conjunction with additional degrees of freedom to the 
standard finite element approximation within the framework of partition of unity, the extended finite 
element method (XFEM) [16-17] overcomes the inherent drawbacks associated with use of the 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-6- 
 

conventional finite element methods and enables the crack to be represented without explicitly 
meshing crack surfaces, and so the crack geometry is completely independent of the mesh and 
remeshing is not required, allowing for the convenient simulation of the fracture propagation. 
 
The XFEM approximation of the displacement field for the crack problem can be expressed as [17] 

                       
4

1

, ,
cr tip

l l l
I I I I I I I I I

I N I N I N l

H H B r B r 
   

       u x x u x x x a x b N N N  

(26) 
where N  is the set of all nodes in the mesh, crN  the set of nodes whose support are bisected by 

the crack surface cΓ , tipN  the set of nodes whose support are partially cut by the crack surface, 

 I xN  and  I xN  are the standard finite element shape functions, Iu  are displacement nodal 

degrees of freedom, Ia  and  l
Ib  are additional degrees of freedom for the displacement, and 

 H x  and    ,lB r   are the appropriate enrichment basis functions which are localized by 

 I xN . The shape function  I xN  can differ from  I xN . 

 
The discontinuity in the displacement field given by a crack cΓ  can be represented by the 

generalized Heaviside step function 

         
 

1 0

1 0

d
H H d sign d

d

    

x
x x x

x
                (27) 

where  d x  is the signed distance of the point x  to cΓ . 

 

The enrichment basis functions    ,lB r   are required to model the displacement around the crack 

tip, which are generally chosen as a basis that approximately spans the two-dimensional plane strain 
asymptotic crack tip fields in the linear elastic fracture mechanics: 

               
4

1
sin 2 cos 2 sin 2 sin cos 2 sinl

l
B r      


             (28) 

where  ,r   are the local polar coordinates at the crack tip. The first function in Eq. (28), 

 sin 2 , is discontinuous across the crack faces     , so the Heaviside enrichment in Eq. (26) 

can be removed in the displacement field approximation of the elements which are partially cut by 
the crack surface. 
 
According to Eq. (26), the displacement discontinuity between the two surfaces of the crack can be 
obtained as 

                   1 12 2 ,
cr tip

I I I I
I N I N

B r  

 

    w x u x u x x a x b N N      cΓx        (29) 

Combination of Eqs. (29) and (20) enables determining the shape function wN . 
 
The fluid pressure field within the crack is approximated by 

   
cr

p
I I

I N

p N p


 x x        cΓx                          (30) 

where  p
IN x  are the standard finite element shape functions. In some cases, it can also be chosen 

as a special function so as to allow for the pressure singularity at the crack tip and the associated 
near-tip asymptotic fracture opening associated with a zero-lag viscosity dominated regime in a 
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hydraulic fracture [18]. 
 
4.2 Element implementation 
 
As shown in Figure 3, the two-dimensional 4-node plane strain channel and tip elements have been 
constructed for the hydraulic fracture problem. Each node has the standard displacement degrees of 

freedom Iu . The additional degree of freedom Ia  and  l
Ib  are assigned to the four nodes of 

channel and tip elements, respectively. In addition, the virtual degree of freedom of fluid pressure 
has been assigned to nodes 3 and 4 so as to represent the internal fluid pressure within the crack. It 
should be pointed out that nodes 3 and 4 physically do not have fluid pressure degrees of freedom 
because here the fluid flow is confined within the crack. So the integral calculation of the related 
element matrixes and equivalent nodal forces (e.g. Eq. (24)) must be correctly carried out along the 
true crack path within the element. 
 

 
Figure 3. 2-D 4-node plane strain hydraulic fracture elements 

 
So, the active degrees of freedom for the channel element are 





1 1 2 2 3 3 4 4

Standard

T
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 

                   (31) 

and for the tip element the Heaviside enriched degrees of freedom Ia  need to be replaced by the 

crack tip field enriched degrees of freedom  l
Ib . 

 
According to the element connectivity and the arrangement of nodal degrees of freedom, the 
bilinear shape functions are used to approximate the displacement field, and the linear shaped 
functions are used to approximate the fluid pressure field. 
 
Gauss quadrature is used to calculate the system matrix and equivalent nodal force. Since the 
discontinuous enrichment functions are introduced in approximating the displacement field, 
integration of discontinuous functions is needed when computing the element stiffness matrix and 
equivalent nodal force. In order to ensure the integral accuracy, it is necessary to modify the 
quadrature routine. Both the channel and tip elements are partitioned by the crack surface into two 
quadrature sub-cells where the integrands are continuous and differentiable. Then Gauss integration 
is carried out by a loop over the sub-cells to obtain an accurate integration result. 
 
Due to the flexibility, the user subroutine of UEL provided in the finite element package ABAQUS 
[20] has been employed in implementing the proposed elements in Fortran code. The main purpose 
of UEL is to provide the element stiffness matrix as well as the right hand side residual vector, as 
need in a context of solving the discrete system of equations. 
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5. Numerical Examples 
 
The proposed user element together with the structural elements provided in the ABAQUS element 
library are used to establish a finite element model to investigate a plane strain hydraulic fracture 
problem in an infinite impermeable elastic medium. The far-field boundary conditions are modelled 
by using infinite elements. The initial testing of this new element formulation involves using 
boundary value problems of an imposed fluid pressure and an imposed fracture opening. These 
problems are used to test for both of the two limiting cases of a toughness-dominated and 
viscosity-dominated plane-strain hydraulic fracture for which the analytical solutions are available 
in the literature [21].  
 

           
(a) (b) 

Figure 4. Zero-viscosity case: (a) Imposed pressure; and (b) Imposed opening 
 

           
(a)                                                                 (b) 

Figure 5. Zero-toughness case: (a) Imposed pressure; and (b) Imposed opening 
 
The simulation results for a plane strain toughness-dominated KGD hydraulic fracture are shown in 
Figure 4. The corresponding analytical solutions for the zero-viscosity case are also shown for 
comparison. The crack opening is obtained by imposing a given pressure calculated according to 
the analytical solution [21] on the crack surface of the finite element model. While the fluid 
pressure is obtained by applying an opening profile calculated from the analytical solution [21] to 
the crack surface of the finite element model. The results for the zero-toughness case are shown in 
Figure 5. Only twenty channel elements in total are meshed along the crack length in the finite 
element model.  
 
It can be seen that the XFEM predictions generally compare well with the analytical solutions for 
crack openings, while for the fluid pressure the XFEM predictions differ from the analytical 
solutions at the region close to the crack tip. One main reason for the deviation of the predicted 
fluid pressure from the analytical solutions near the tip is likely to be because the user-defined 
element is assumed to be cut through by the crack and no tip element is included in the finite 
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element model. Another reason could be that a static fracture rather than a propagating fracture is 
simulated here. Improved prediction can be expected with including the crack tip element that 
captures the crack tip singularity correctly. 
 
Figure 6 shows the stress field and crack opening profile of a center-cracked tension plate subjected 
to uniform tensile stress of 1.0 MPa. The width of the plate is 40 m and the half length of the crack 

is 5 m. The corrected stress intensity factor [22] is I =3.995 MPa mK . The calculation of the 

stress intensity factors is performed with the domain form of interaction integral. The computed 

stress intensity factors are I =3.954 MPa mK , and 8
II =3.8 10 MPa mK  . 

 

     
Figure 6. Stress and crack opening profile of a center-cracked tension plate 

 
6. Summary 
 
The application of the extended finite element method to the hydraulic fracture problems has been 
presented. The discrete governing equations for the coupled fluid-fracture problem have been 
derived. A user element based on the XFEM has been implemented in ABAQUS, which includes 
the desired aspects of the XFEM so as to model crack propagation without explicit remeshing. In 
addition, the fluid pressure degrees of freedom have been introduced and assigned to the 
appropriate nodes of the proposed element to describe the fluid flow within the crack and its 
contribution to the crack deformation. Verification of the user-defined element has been made by 
comparing the FEM predictions with the analytical solutions available in the literature. The 
preliminary result presented here is a first attempt to the promising application of the XFEM to the 
hydraulic fracture simulation. 
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