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Abstract  
A moving polarization saturation (PS) model is proposed to study the anti-plane Yoffe-type crack with 
constant velocity in ferroelectric materials. Based on the extended Stroh formalism, the model is solved 
using complex function method. The closed-form expressions for the electroelastic fields are obtained in a 
concise way. Results are shown to converge to known solutions for static PS model and the moving linear 
piezoelectric model. 
Keywords  Moving polarization saturation model; Ferroelectric materials; anti-plane. 
 

1 Introduction 
 Ferroelectric materials always endure dynamic loads, such as mechanical impact or pulse-like 
electric loading in application [1]. Since their instinct low fracture toughness, the reliability 
concerns and optimal design of smart devices using ferroelectrics call for a better understanding of 
the fracture behavior. Compared with the well developed static piezoelectric fracture mechanics, 
few investigations on the dynamic fracture mechanics of piezoelectric and ferroelectric materials 
have been reported.   

The crack propagation problem is always the popular point of study among the theoretical 
dynamic fracture mechanics. Freund [2] classified the problems of crack propagation into three 
classes (1) The first type is the steady state crack growth. Chen and Yu [3] studied the anti-plane 
moving crack problem in piezoelectric materials. They found that the intensity factors are 
independent of the velocity of the crack. Soh et al. [4] researched the generalized plane problem of 
a finite Griffith crack moving with constant velocity in an anisotropic piezoelectric material. (2) 
The second type is self-similar crack growth. (3) The third type is the crack growth due to 
time-independent or time-dependent loading. In this case, Li and Mataga [5, 6] obtained the 
transient closed-form solutions for dynamic stress and electric displacement intensities and dynamic 
energy release rate of a propagating crack in homogeneous hexagonal piezoelectric materials 
dynamic anti-plane point loading. To et al. [7] studied propagation of a mode-III interfacial 
conductive crack along a conductive interface between two piezoelectric materials. Chen et al. [8]  
researched the problem of dynamic interfacial crack propagation in elastic–piezoelectric 
bi-materials subjected to uniformly distributed dynamic anti-plane loadings on crack faces. 
 All the aforementioned studies on the problems of crack propagation are mainly about the 
linear dynamic fracture mechanics. However, when the electrical load is not weak, ferroelectric 
materials exhibit strong electrical nonlinearity, Gao et al. [9] proposed a strip polar saturation (PS) 
model of electrical yielding. It is convenient to propose some simplified models or approximate 
analyses. Shen et al. [10] developed a strip electric saturation and mechanical yielding model for a 
mode III interfacial crack of Yoffe type between ferroelectric-plastic bi-materials.  

In this paper, the static PS model is extended to the moving PS model for studying the 
anti-plane crack propagation problem of ferroelectric materials. The plan of the rest of the paper is 
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as follows. Section 2 introduces the governing equations and the boundary conditions. Section 3 
proposes the moving PS model and solves the problem using the complex function method. And the 
explicit expressions of the electroelastic fields are obtained. Section 4 discusses the anti-plane case. 
Finally, Section 5 gives the conclusions. 

2 Statement of the problem 
 Consider an infinite ferroelectric medium containing a Yoffe-type crack of fixed length 
2a,which moves through an otherwise unbounded ferroelectric materials at speed v, with the crack 
opening at the leading crack tip and closing at the trailing crack speed. The ferroelectric solids are 
considered as a class of mechanically brittle and electrically ductile solids. The electrical 
polarization is assumed to be saturated only in a line segment in front of the crack. And the medium 
is subjected to remote uniform electro-mechanical loads as shown in Fig.1. 

 
Fig.1. Schematic representation of the moving PS model 

2.1 Basic equations  

 Our earlier work [4] has proposed the governing equations of the piezoelectric material and 
given the solutions using the Stroh formalism method in details. For the reason of a self-contained 
presentation, the basic equations and the solution method are also summarized as follows. 

In a rectangular coordinate system xi (i =1, 2, 3), the momentum balance equations and quasi 
static Maxwell equation for quasi-electrostatic piezoelectricity are as follows 

2 2
, /ij j iu tσ ρ= ∂ ∂ , , 0i iD =                                   (1) 

where ρ is the density of the material, ui, σij and Di are the elastic displacements, stresses, and 
electric displacements, respectively, and a subscript comma denotes partial differentiation with 
respect to one of the coordinates xi. The constitutive relations are 

, ,ij ijkl k l ijk kc u eσ φ= + , , ,i ikl k l ik kD e u ε φ= −                          (2) 

whereφ is the electric potential, the electric fields Ei are related toφ as Ei = -φ,i, cijkl, ekij and εij 
are the elastic stiffness, piezoelectric and dielectric constants, respectively.  

x1 
x 

x2 (pole) y 

vt 

a b -b -a 

23σ ∞
2D∞

22σ ∞

21σ ∞

2D∞
23σ ∞

22σ ∞
21σ ∞



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-3- 
 

    For a two-dimensional problem, all the variables are independent of x3, Eqs. (1) and (2) can be 
expressed in the following compact form:  

1,1 2,2 ρ+ = &&t t gU                                     (3) 

T
1 ,1 ,2 2 ,1 ,2,= + = +t QU RU   t R U TU                            (4) 

where T
1 2 3[ , , , ]u u u φ=U , T

1 2 3[ , , , ]Dβ β β β βσ σ σ=t  (β =1,2), and diag[1, 1, 1, 0]=g    . The matrices Q, R 

and T are related to the material constants by 

1 1 1 1
T
1 1 11

i k i

k

c e

e ε

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
Q , 1 2 1 2

T
2 1 12

i k i

k

c e

e ε

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
R , 2 2 2 2

T
2 2 22

i k i

k

c e

e ε

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
T                    (5) 

Substituting Eq. (4) into Eq. (3) leads to 

( )T 2
,11 ,12 ,22 tρ+ + + = ∂ ∂2QU R R U TU g U/                        (6) 

2.2 Yoffe-type crack 

As shown in Fig.1. (x, y, z) is a moving coordinate system fixed on the crack with the center as 
its origin. It has the relation with the fixed coordinate system (x1, x2, x3) as follows 

1 2 3, ,x x vt y x z x= − = =                                                   (7) 
Then   

v
t x
∂ ∂
= −

∂ ∂
                                          (8) 

Thus, Eq. (6) can be written as 

( ) ( )2 T
, , ,xx xy yyvρ− + + + = 0Q g U R R U TU                          (9) 

Eq. (9) is the governing differential equation for the steady-state electroelastic fields. Note that 
the structure is identical to that of the static case when (Q − ρv2g) is identified with Q. 

2.3 Boundary conditions 

 The medium is subjected to remote uniform electro-mechanical loads given 

by T
2 21 22 23 2[ , , , ]Dσ σ σ∞ ∞ ∞ ∞ ∞=t . The crack surfaces are traction-free and charge-free, with electrical 

yielding along strip a≤|x|≤b. 
The full set of boundary conditions for the moving PS model considered in this paper can be 

summarized as 

2
+ − ∞= = −t t t ,      at  x a<                               (10a) 

i iu u+ −= , i=1, 2, 3, 2 2 2 sD D D D+ − ∞= = − + ,   at  a x b≤ ≤                 (10b) 

0=t             at y →∞                       (10c) 
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where Ds is the electrical saturation limit. 

3 Solution of the problem 

3.1 Full field solution 

Adopting Stroh formalism for anisotropic elasticity, a general solution to Eq. (9) can be sought 
in the form  

( )f z=U a , z x yμ= +                           (11) 

where μ and a are a constant and a constant vector respectively; and f(z) is an arbitrary function of 
variable z subject to the twice-differentiable requirement. Substitution of Eq. (11) into Eq. (9) 
results in 

( )2 T 2 0vρ μ μ⎡ ⎤− + + + =⎣ ⎦Q g R R T a                         (12) 

This is a nonlinear eigenvalue problem. A nontrivial solution of a requires that the determinant 
of its coefficient matrix must be zero, i.e., 

( )2 T 2det 0vρ μ μ⎡ ⎤− + + + =⎣ ⎦Q g R R T                         (13) 

This is a polynomial of degree 8 for μ. If μα (α = 1, 2, 3, 4) are assumed to be the four distinct 
roots with positive imaginary parts, and aα are the associated eigenvectors, the general solution can 
then be expressed as 

( )
4

1
2 f zα α α

α=

= ℜ∑U a                                (14)  

where ℜ denotes the real part and z x yα αμ= + . 

Substituting Eq. (14) into Eq. (4) and by using Eq. (3), the stress and electric displacement 
vectors can be expressed as 

2
1 , ,y xvΦ ρ= − +t gU , 2 ,xΦ=t                          (15) 

in which 

( )
4

1
2 f zα α α

α

Φ
=

= ℜ∑b                               (16) 

where Φ = [φ 1, φ 2, φ 3, φ 4]T is called the generalized stress function vector, and bα can be 
determined from aα by the following relation: 

( ) ( )T 2 1vα α α α αμ ρ μ−⎡ ⎤= + = − − +⎣ ⎦b R T a Q g R a                   (17) 

 Introducing two 4×4 matrices, i.e., 

[ ]4321 ,, aaaaA ,= , [ ]4321 ,, bbbbB ,=                         (18) 

and a function vector, i.e., 
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[ ]T1 1 2 2 3 3 4 4( ) ( ), ( ), ( ), ( )z f z f z f z f zα =f                         (19) 

Then Eqs. (14) and (16) can be rewritten as 

( )2 zα⎡ ⎤= ℜ⎣ ⎦U Af , ( )2 zαΦ ⎡ ⎤= ℜ⎣ ⎦Bf                        (20) 

Eqs. (15) and (20) together with the relations given by Eq. (17) are the main results of this 
section. In these expressions, the only unknown is the function vector f(zα). The appropriate form of 
f(zα) depends on the boundary conditions. 

In order to obtain the function vector f(zα), following the same procedure [11, 12], the 
continuity of t(x) on the whole real axis is  

' '' '( ) ( ) ( ) ( )x x x x
− ++ −+ = +Bf B f Bf B f ,   x−∞ < < +∞                 (21) 

A new complex function vector ( )zh  is defined as 
''( ) ( ) ( )z z z= =h Bf B f                               (22) 

And it should satisfy the boundary conditions (10) along the crack faces 

2( ) ( )x x+ − ∞+ = −h h t , x a<                          (23) 

We also have 
' ' '( ) ( ) ( )i x x x+ −= −δ HBf HBf                            (24) 

where '
1 1 2 2 3 3( ) { , , , }x u u u u u u φ φ+ − + − + − + −= − − − −δ is the generalized opening displacement, In addition, 

other two matrices are defined by 
12 [ ]i −= ℜH AB , 1− =H Λ                                (25) 

Introduce a new complex function vector 
'( ) ( )z z=g HBf                                    (26a) 

' 1 1( ) ( )z z− −=f B H g                                  (26b) 

And the next task is to determine the unknown complex function vector g(z). The g1(z), g2(z) 
and g3(z) are holomorphic functions in whole z plane with a cut (-a, a). g4(z) is holomorphic in 
whole z plane with a cut (-c, c).  

Thus, using the Eqs. (23) and (10), we have the following equations 

1 44 4 4 21( ( ) ( )) ( ( ) ( ))j j jg x g x g x g xΛ Λ σ+ − + − ∞+ + + = − ,     x a<                  (27a) 

2 44 4 4 22( ( ) ( )) ( ( ) ( ))j j jg x g x g x g xΛ Λ σ+ − + − ∞+ + + = − ,    x a<                  (27b) 

3 44 4 4 23( ( ) ( )) ( ( ) ( ))j j jg x g x g x g xΛ Λ σ+ − + − ∞+ + + = − ,    x a<                  (27c) 

4 44 4 4 2( ( ) ( )) ( ( ) ( ))j j jg x g x g x g x DΛ Λ+ − + − ∞+ + + = − ,     x a<                 (27d) 
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4 44 4 4 2( ( ) ( )) ( ( ) ( ))j j j sg x g x g x g x D DΛ Λ+ − + − ∞+ + + = − + ,  a x b≤ ≤            (27e) 

where the Einstein summation convention for repeated indices is adopted, and j ranges from 1 to 3. 
Solving the Eqs. (27a), (27b), (27c) and (27d) gives the following equation  

* *
2( ( ) ( ))ij j j ig x g x tΛ + − ∞+ = − ,  x a<                            (28) 

where *
4 4 44/mj mj m jΛ Λ Λ Λ Λ= − , *

2 2 24 4 44/j j jt t t Λ Λ∞ ∞ ∞= − , m, j=1, 2, 3.  

 Thus, we can obtain [12] 
* * * '

2 0( ) ( )z f zΛ ∞=g t , * * 1 * '
2 0( ) ( ) ( )z f zΛ − ∞=g t ,    x a<                (29) 

where 
* *

3 3[ ]mjΛ ×=Λ                                (30a) 

 *
1 2 3[ ( ), ( ), ( )]Tg z g z g z=g                          (30b) 

 * * * *
2 21 22 23[ , , ]Tt t t∞ ∞ ∞ ∞=t                             (30c) 

'
0 2 2

1( ) ( 1)
2

zf z
z a

= −
−

                         (30d) 

Solving Eqs. (27d) and (27e), we have 
'

4 4 24 44 0 44( ) { ( ) ( )} / ( ) /j j b sg z g z t f z D g zΛ Λ Λ∞= − + +                   (31) 

where g0(z) has the same property as the function g4(z), which is holomorphic in whole z plane with 
a cut (-c, c). 

'

2 2

1( ) ( 1)
2b

zf z
z b

= −
−

                         (32a) 

2 2

2 2

0 2 2 2 2

2 2

1 1( ) log arccos( )
2 2

z b a i
a z az bg z

i bz b a z bi
a z b

π
π

⎧ ⎫−
+⎪ ⎪

⎪ ⎪−= − −⎨ ⎬
− −⎪ ⎪−⎪ ⎪−⎩ ⎭

                (32b) 

Furthermore, g0(z) has the following property on the crack faces 

 0 0( ) ( ) 0g x g x+ −+ = , x a<                             (33a) 

0 0( ) ( ) 1g x g x+ −+ = , a x b≤ ≤                           (33b) 

Wang [12] gave the method to calculate the function log z i
z i
+
−

. 
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2
2 1

1

log log ( )rz i i
z i r

θ θ+
= + −

−
                           (34) 

where r1 and r2 are the modulus of the complex variables z+i and z -i respectively.θ1 andθ2 are the 
inclined angles of the complex variables z +i and z -i with respect to the negative imaginary axis. 
From Eqs. (29) and (31), the unknown complex function vector g(z) has been obtained. Then 

substituting the result into Eq.(26b), we can derive the unknown function vector ' ( )zf , which 

provides the full-field solutions of the problem using Eq. (15). 

3.2 Electric saturation zone size 

 From Eq. (15), we obtain the electric displacement ahead of the crack tip 

2 4 44 4 4

'
4 0 0

2 2

2 2

2 22 2 2 2

2 2

( ( ) ( )) ( ( ) ( ))

2 ( ) ( ( ) ( ))

2 2 1( arccos( )) log
2 2

j j j

b s

s s

D g x g x g x g x

T f x D g x g x

x b a i
aa x x bD D D D

b ix b x b a i
a x b

Λ Λ

π
π π

+ − + −

+ −

∞ ∞

= + + +

= + +

⎧ ⎫−
+⎪ ⎪

⎪ ⎪−= − − + −⎨ ⎬
− −⎪ ⎪−⎪ ⎪−⎩ ⎭

       (35) 

 In order to ensure the non-singularity of the electric displacement at x b= , Eq. (35) only has a 

solution if the coefficient of the singular term
2 2

x
x b−

vanishes. The following equations must be 

satisfied 

2cos( )
2 s

Da
b D

π ∞

=                                  (36) 

 From the above equation, we can calculate the size of the electric saturation zone 

2sec( )
2 s

Dr b a a a
D

π ∞

= − = −                             (37) 

 Under small-scale yielding conditions, r<<a, Eq. (37) can be approximately reduced to 

22( )
2 2 s

Dar
D

π ∞

= . 

3.3 Electroelastic fields near the crack tip 

From Eqs. (15) and (20), the stresses and electric displacements can be obtained 
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( ) ( )
4

2 ' '
1

1
2 ( )v f z f zα α α α α α α α

α

ρ μ
=

⎡ ⎤
= ℜ −⎢ ⎥

⎣ ⎦
∑t g a b                     (38) 

( )
4

'
2

1
2 f zα α α

α=

⎡ ⎤
= ℜ⎢ ⎥

⎣ ⎦
∑t b                              (39) 

It is obvious that the distributions of the electroelastic fields near the crack tip are of great 
interest to us. By introducing a polar coordinate system (r, θ) with the origin at the crack right tip, 
we have 

( )cos sinz a rα αθ μ θ− = +                                            (40) 

When r is small compared to the half-length a of the crack, z aα ≈ . Eqs. (30d), (32d) and (34b) 

can be expressed as 

'
0

1 1( ) ( 1)
2 2 cos sin

af z
rα

αθ μ θ
= −

+
                    (41a) 

'

2 2

1 1( ) ( 1)
2b

af z
i b a

= −
−

                         (41b) 

1log ( 2 tan )z i i a
z i

π −+
= −

−
                        (41c) 

From Eq. (39), the stress in front of the crack tip on the x-axis is calculated  

4*
2 2 2 2

44

j
j j s

xt D
x a

Λ
σ

Λ
∞= +

−
 j=1, 2, 3                        (42) 

By using the definition of dynamic intensity factor vector 

2[ , , , ] 2 ( )limT
D

x a
K K K K x aπ

→
= = −Ⅱ Ⅰ ⅢK t                       (43) 

4 Crack perpendicular to the poling axis, anti-plane problem 

In this situation, the infinite plate only subjects to 23σ ∞ and 2D∞ . The present authors have studied 

the anti-plane moving PS model using the continuous distribution dislocation method. In this article, 
some results will be verified using the complex function method. 

From Eq. (A.13), we obtain 
15

23 2
11

[ , ] [ , 0]T T
D

e
K K a Dπ σ

ε
∞ ∞= = +ⅢK                          (44) 

where KⅢ is independent of the crack propagation velocity. 
From Eqs. (15), (16) and (A.13), we have 
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1
15 2

23 23 2 1
11

15
23 2

11

( )(cos sin )
2

( ) cos
2 2

ea D
r

ea D
r

σ σ θ μ θ
ε

θσ
ε

−∞ ∞

∞ ∞

⎡ ⎤
⎢ ⎥= ℜ + +
⎢ ⎥⎣ ⎦

= +

                  (45) 

If the ferroelectric material is such that a crack propagates in a direction the maximum shear 
stress, it can be seen that the maximum shear stress 23σ occurs at 0θ =  for all the crack speeds. It 
means the crack remains in its straight line path for all the crack speeds.  

5 Conclusions 
The transient response of a anti-plane Yoffe-type crack moving with constant velocity in 

ferroelectric materials is investigated in this paper. The dynamic intensity factors of stress, electric 
displacement are obtained in explicit forms. When the velocity of the crack v→0，the moving PS 
model will reduce to the static PS model. When the size of the electric saturation zone r→0, the 
moving PS model is in agreement with the moving linear piezoelectric model. For the case of 
anti-plane problem, it is concluded that the crack remains in its straight line path for all the crack 
speeds. 
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Appendix  

The matrices Q, R and T are  

44 15

15 11

c e
e ε
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
Q , 0 0

0 0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

R , 44 15

15 11

c e
e ε
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
T                                   (A.1) 

The eigenproblem given by Eq. (12) becomes 

2 2 2
44 44 15 1

2 2
215 11

(1 )
0

(1 ) (1 )

c v c e a
ae

ρ μ μ

μ ε μ

⎡ ⎤− + + ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

+ − +⎢ ⎥ ⎣ ⎦⎣ ⎦
                                      (A.2) 

Similar to the static case, two characteristic roots are μ1=i, . μ2=iβ. 
in which 

 2 2 1/2(1 / )v cβ = −                                                     (A.3) 

where 1/2
44( / )c c ρ= is the speed of the piezoelectric stiffened bulk shear wave, 

2
44 44 15 11/c c e ε= + is the piezoelectric stiffened elastic constant. 

 The matrix H is then 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-10- 
 

11 15
2
15

4444 1511
11

2
e

e
e cc

ε

ββ ε
ε

⎡ ⎤
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

H= ,   
2
15

44 151
11

15 11

1
2

e
c e

e

β
ε

ε

−

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥−⎣ ⎦

Λ=H =                  (A.4) 

As 1β → i.e. v=0, H will reduce to the static value [12]. 
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