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ABSTRACT

This paper reports results of experimental and numerical studies of the interaction of a planar
stress pulse with a stationary half-plane crack. The in-plane acceleration field resulting from a
step pulse is integrated numerically to obtain displacement fields, which are presented as
contour plots of the components parallel and perpendicular to the crack plane. Quasi-static
eigenfunction expansions are fitted to the dynamic field to determine the accuracy with which
they predict the true value of the stress intensity factor, as a function of the radius over which
the fit is performed. For radii greater than about half of the dilatational wavefront radius, even
fits to large numbers of parameters systematically overestimate the true value of K by up to
13%. Experimental results are presented from a through-crack in a plate of polymethyl
methacrylate, with stress pulses generated by an electromagnetic loading device. Reasonable
agreement is obtained between the optically measured stress intensity factor and that calculated
from strain gauge records of the applied load history.
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INTRODUCTION_

One of the main aims of experimental studies of dynamic fracture is the measurement of the
mode I dynamic stress intensity factor, Kig. Many optical techniques have been developed to
provide wholefield displacement or stress data; theoretical eigenfunction expansions of the
relevant field are commonly fitted to these data and Kjq is assumed to be equal to the coefficient
of the first term calculated from the fit. Photoelasticity fringe patterns have long been analysed
in this way. More recently, the same approach has been taken with data from experimental
techniques which measure in-plane displacements such as moiré interferometry (Arakawa et al.,
1991), moiré photography (Whitworth and Huntley, 1994; Whitworth, 1992), and speckle
photography and interferometry (Huntley and Benckert, 1993).

Dynamic effects resulting from the steady motion of the crack tip through the material can be
taken into account by fitting running-crack eigenfunctions. General expressions for stress and
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displacement fields due to mode I, I and III cracks running at constant speed were derived by
Nishioka and Atluri (1983). However, this approach may not be adequate under non-steady-
state situations. A simple example is that of a stationary crack loaded by a stress pulse. The
running crack tip eigenfunctions reduce to those for a quasi-statically loaded crack when the
crack tip velocity is zero; the quasi-static fields are, however, inappropriate functions to use
since each of the terms in a series expansion of the quasi-static stress or displacement field
assumes the equations of equilibrium to be satisfied, which is clearly incorrect under conditions
of stress wave loading. It seems likely therefore that there will be an error in the estimated value
of Kyq resulting from this fitting procedure.

In the first half of this paper, the extent of the error is estimated for the particular case of a half-
plane crack loaded by a planar stress pulse oriented parallel to the crack line and having a step
time dependence. Eigenfunction expansions of the quasi-static displacement field are fitted to
the calculated dynamic displacement field to determine the error in Kyg. In the second half of the
paper, experimental results are presented from a stationary crack loaded dynamically, in which
the displacement field is measured by sequences of high resolution moiré photographs recorded
by a high speed camera. The error resalting from the fitting procedure can be estimated in this
case from the stress intensity factor calculated from the applied load.

NUMERICAL EVALUATION OF THE DISPLACEMENT FIELD

The problem of the interaction of a step stress pulse with a half-plane crack (see Fig. 1) has
been studied previously by, for example, Freund (1990), who derived the normal stress ahead
of the crack tip and the form of the stress intensity factor. This analysis has subsequently been
extended to include expressions for the in-plane acceleration field (Freund, 1991). The in-plane
displacement field, u = (uy, uy), can then be calculated by a double integration of the
accelerations with respect to time (Whitworth, 1992). Both the acceleration field analysis and
details of the integration will be presented in a forthcoming publication.

Figure 2 shows contour plots of the displacement field components parallel and perpendicular
to the crack line for the case Poisson’s ratio v = 0.499 where the incident stress pulse and

Fig. 1. Wavefronts produced by the interaction of a crack and a dilatational stress pulse. The
dilatational and shear waves travel with speeds cq and cg respectively.

Stress Pulse Loading of a Stationary Crack 2911
05 0.75 10 -1.0 0.75 05 0.25 00 025 05 075 10
b 5 ;
Fors 075+ Q"\ [ors
[-os O.SE :0.5
(025 025 50.25
; J crack £
0.0 . ':DD
-0.25 -0255 :—47.5
:0.5 -0‘5: :—»0.5
Fors 0753 YQ; Fo7s
F > F
3 b
] ] E
4O 1.0 2o 0
-1.0 0.75 05 025 00 025 05 075 10 -1.0 075 05 025 00 025 05 075 10

Fig. 2. Contour plots of the components of the displacement field parallel (a) and perpendicular
(b) to the crack line under loading by a unit step pulse. Poisson’s ratio = 0.499. Young’s
modulus has been taken as unity. Solutions for specific values of E, and for non-unit stress
may be obtained by multiplying the displacements by a factor of o/E.

Young’s modulus are both taken to be unity. For generality, the results have been expressed in
a dimensionless coordinate system, in which the dilatational wavefront has a radius of 1.0, and
denoted by a subscript, n. The displacements have also been expressed in non-dimensional
form, from which the true displacements may be calculated as

u= upt/a €]

where ¢ is the time after the arrival of the stress pulse at the crack line, and a is 1/cg where ¢4 is
the dilatational wave speed. The accuracy of the analysis was tested by examining the limiting
behaviour of uy and u, at small distances, r, from the crack tip (Whitworth, 1992). As
expected, both components were found to have the same r!/2 dependence as for a crack under
quasi-static mode I'loading; furthermore the angular dependence was also found to be identical
to that for the quasi-static mode I crack.

RESULTS OF FITTING QUASI-STATIC EIGENFUNCTION EXPANSION TO THE
DYNAMIC FIELD

The quasi-static crack tip displacement field in a thin plate may be expanded as a series in half-
integer powers of r, the distance from the crack tip (Barker et al., 1985; Huntley and Field,
1988). The lowest order term varies as rl/2, the coefficient of which is a linear combination of
the mode I and mode II stress intensity factors, Ky and K. Close to the crack tip, the
displacement field is three dimensional, but a two-dimensional solution is generally considered
a sufficiently good approximation at radii greater than half the plate thickness (Yang and
Freund, 1985). For a running crack under equilibrium conditions, the dynamic displacement
eigenfunctions have been given by Nishioka and Atluri (1983). For the problem considered
here, the crack is stationary; the x and y displacement components of the jth eigenfunction then
reduce to the quasi-static solution:

) K, G+ 1) [5 (@2x+j+2(-1)) cos(j6/2) — j cos((2 — jI2)6)
(uy‘”)‘ 8 u 2m | (2K —j — 2(~1)) sin(j6/2) — j sin((2 — j/2)6)
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+ K’{ G+ 1 Z (2;<+j.— 2(—1)f? sin(j?/Z) +j'sin((2 —jI2)6) i
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where u is the shear modulus, and x is equal to 3-4v for plane strain, or (3 - V)/(1 + V) for
plane stress. The general displacement expression is g superposition of such eigenfunctions
subject to appropriate boundary conditions. Kjo and Kj are eigenvalues for symmetric (about
the crack line) and asymmetric eigenfunctions respectively.

The stress intensity factor under plane stress for step pulse loading is given by Freund (1990)

as.:
_y2
K= 20\ 22 3)
Ta

where c” is the amplitude of the stress step. The availability of a solution for the displacement
field under a particular example of dynamic conditions makes it possible to assess the error that
can be expected in the value of the stress intensity factor when determined by such fitting
methods, as a function of the number of eigenfunctions included in the fit. Although the errors
may differ in detail for other forms of dynamic loading, examination of this particular solution
exemplifies the magnitude of the errors than could typically be expected.

The first m symmetric eigenfunctions together with a rigid body displacement, were fitted to the
y component of the calculated dynamic displacement field over a circular region of radius r, =
"ma(xj centred on the crack tip. The fit was performed over m symmetric eigenfunctions
(uy 7)(r,8) from Egn. (2) with Kj set to zero) by minimising the sum,

2
N m
§? = ZWi[uy(ri,ei)—S— Zuy(j)(r,-,e,-)J @
i=1

=

uy(ri,Gi) are the dynamic displacements, & is a rigid body displacement, and W; is a weighting
factor for the ith dat;{lgoim. There are therefore n = m + 1 variable parameters, these being 6 and
the m eigenvalues K. The fit was performed over a total of N calculated datapoints, spaced
uniformly over 51 values of © from —r to +=, and for values of r, spaced uniformly in
increments of 0.025 from a minimum value of 0.025 to a chosen maximum value, rpax. The
results of such fitting procedures depend on the spacing of the measured datapoints. In this
case, the sampling of the data on a polar coordinate system provides a greater concentration of
points towards the crack tip. Therefore, a weighting factor, W; has been included in the fit. A
value of W; = r was used in order to provide an equal weighting of points per unit area.

The value Kjg¢al¢ of the stress intensity factor determined by the fitting procedure was
calculated from the first eigenvalue as Kf . This has been compared with the true value of the
dynamic stress intensity factor, calculated from Eqn. 3. The comparison of these values as a
function of the number of parameters of the fit, and of the radius of the region of fitted data is
shown in Fig. 3 for the case v = 0.499.

In all cases, the fit is poor for n = 2 and n = 3, and significantly underestimates the true value
of the stress intensity factor. In general, for higher numbers of parameters, the stress intensity
factor is overestimated. The deviation of the eigenfunction expansion from the dynamic
solution increases with increasing radius, similarly affecting the accuracy of the determination
of the stress intensity factor. For n = 4 to 7, the deviation from the true value increases above
approximately rmax = 0.3, whereas for n = 8 to 10, the accuracy improves significantly,
deteriorating only above about rmax = 0.6. In general, the deviation in Kygc2c is greater, and
occurs at lower values of rmax for larger values of Poisson’s ratio.
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Fig. 3. Stress intensity factor Kjg¢al¢ normalised by theoretical value, Kyqtheor as a function of
maximum radius, Imax, 0ver which the least squares fit is carried out. Poisson’s ratio = 0.499.

EXPERIMENTAL

Experiments have been carried out involving a similar loading arrangement to that analysed
theoretically in the previous sections. An electromagnetic pulse generator loads a notch with a
tensile stress wave; a strain gauge record of the incoming stress wave 1s psed to compute the
applied stress intensity factor, and this is compared with the results of fitting an e;genfunctlon
expansion to the measured displacement field. The technique used to measure the displacements
was high resolution moiré photography (Whitworth and Huntley, 1994), in which high
frequency phase gratings are applied to the specimen and }maged ‘with a specially modified
camera lens onto a stationary reference grating. The effective grating frequency is 150 lines
mm-1 giving a basic sensitivity of 6.7 pm fringe-1.

Figure 4 illustrates the specimen geometry, consisting of a re(;tangular polymethyl methacrylate
(PMMA) plate containing a long crack. Loading is provided by a stress pulse generator
consisting of a coil of wires bonded to the right hand edge of the plate; a 10-stage capacitor-
inductor network is discharged through the coil using a spark gap as a triggering device. The
current pulse of ~2 kA provides an approximately square load pulse of ~1.6 kN lasting around
100 ps (Whitworth, 1992). The resulting dilatational pulse propagates through the plate, and is
trailed by shear waves which initiate at the plate edges as the pulse passes.

Figure 5 shows a single frame from one sequence of high resolution moiré fringe patterns
recorded by a high speed camera (Imacon 790) over a 25 mm X 25 mm field of view
centered on the crack tip. The crack is vertical with its tip in the centre of the field of view. The
grating was vertical so the fringe represents the displacement component perpendicular to the
crack line (uy in the coordinate system of Fig. 1). Figure 6 is a set of contour maps showing uy
calculated from the sequence of images. The magnitude of the strain field (proportional to the
contour density) can be seen to increase with time from the initial application of the dynamic
load. Frame 1 was recorded 10.5 s after the arrival of the stress wave at the crack line.

The eigenfunctions (Eqn. 2) were fitted to the measured displacements by minimising the
function given by Egn. 4. In addition to §, a term Qr; cos®; was included to allow for the
possibility of rigid body rotation. The weights W; were set to unity since the data were obtained
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Fig. 4. PMMA plate specimen used for dynamic fracture experiments. A tensile load is applied
to the entire right hand edge of the plate for a duration of about 100 us, generating a
dilatational pulse. As this traverses the plate, it initiates shear pulses at the top and bottom plate
edges. The dilatational pulse is incident on a vertical crack at the tip of which a moiré specimen
grating is mounted, allowing the displacement field to be measured.

Fig. 5. Single fringe pattern from a high speed sequence recorded at the tip of a crack in a
PMMA plate. The field of view is 25 mm X 25 mm, and the inter-frame time is 5 ps.

on a square mesh. Elastic constants E = 5.562 GPa and v = 0.34 were used in the fit; these are
appropriate values for PMMA at loading times of 10-3 - 10-6 s (Read and Dean, 1978).

Figure 7 shows the stress intensity factors calculated from 7-parameter (m = 5) fits to each of
the displacement fields shown in Fig. 6, together with values calculated from two further
loadings of the plate, at later times after arrival of the pulse. The solid line shows a prediction
obtained by convolving a strain gauge record of the input stress profile with the theoretical
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Fig. 6. Contour plots of horizontal in-plane displacement component obtained from high speed
sequence (Fig. 5 corresponds to frame 6). Dimensions are in mm; contour heights are in pm.
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Fig. 7. Dynamic mode I stress intensity factor, Kyq4 as a function of time. The points result from
a 7-parameter eigenfunction fit to measured displacement fields. The line is the result of
convolving a theoretical step pulse solution with a strain gauge trace of the input stress profile.

solution for step pulse loading of an elastic plate under plane stress conditions, given by Eqn.
3. The predicted and measured K values are in agreement to within 5 to 10%. For ¢ = 15 ps,
I'max 1S less than one third of the radius of the expanding dilataional wave, and the results from
the previous sections therefore indicate that a sufficient fit should be provided by the seven (m
= 5) parameter fit. A possible explanation for the remaining discrepancy is a systematic
misidentification of the crack tip position on the experimentally measured fields. An error of
about 0.2 mm (2 pixels) parallel to the crack line is sufficient to explain the observed
discrepancy, and is made plausible by the increased error at earlier times when the fringes are
straighter and the crack tip is harder to locate.
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CONCLUSIONS

The in-plane displacement field around a stationary crack following loading by a planar step
stress pulse has been calculated numerically from an analytical solution for the acceleration
field. The results obtained were found, as expected, to be in good agreement with the quasi-
static solution very close to the crack tip. When eigenfunction expansions of the quasi-static
displacements were fitted to the calculated dynamic displacement fields, significant errors in Ky
were found as the radius of fitting approached the radius of the diffracted dilatational wave. The
maximum radius of fitted data for which satisfactory determinations of Kj can be obtained by
this procedure increases with the number of eigenfunctions included in the fit. However, even
fits with large numbers of parameters can in the worst case systematically overestimate the true
value of Ky by up to 13%. Experiments have also been carried out to test the reliability of
estimating K in this way. In this case the results of the fitting were compared with K values
calculated from strain gauge records of the incoming stress pulse. Agreement of results to
within the experimental error of 5-10% was obtained.
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