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ABSTRACT

Modeling tools which allow for the simultaneous treatment of scales ranging from
Angstroms to microns has stood out as one of the main challenges in materials modeling.
In this paper we discuss a reformulation of previous work on the quasicontinuum method
that allows for a treatment of internal interfaces. The model is applied to deformation at
a blunt crack tip and to the interaction of dislocations with a grain boundary.
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INTRODUCTION

Recent interest in the multiple scale modeling of materials has been precipitated in
part by the existence of questions in the study of plasticity and fracture which necessitate
the consideration of nucleation and interaction of dislocations. In many instances, such
questions require an appropriate treatment not only of the small scale features that owe
their existence to the presence of the underlying discrete lattice, but also the long range
interactions which can be successfully captured within a linear elastic framework and are
difficult to manage with purely atomistic methods. Many problems like those mentioned
above pose challenges to conventional modeling techniques which preferentially select a
particular length scale as being dominant.

The thesis of the present work is that in some cases a successful approach to modeling
the mechanics of materials must freely range over scales from at least the Angstrom to
the micron range. In an earlier paper (Tadmor, Ortiz and Phillips 1996), we have intro-
duced the quasicontinuum method in which it is supposed that a conventional continuum
mechanics formulation can have its range of applicability broadly extended by incorpo-
rating atomistically derived constitutive information. Efforts to enlarge the scope of the
method to allow for the treatment of internal interfaces suth as grain boundaries required
a reformulation of the method as will be shown below.

The present paper outlines the amended logic of our mixed atomistic- continuum scheme
in light of the changes that were needed in order to treat grain boundaries (for a detailed
discussion see Shenoy, Miller, Tadmor, Phillips and Ortiz 1996). As in the earlier formula-
tion the perspective remains that of removing irrelevant degrees of freedom in a systematic
way without at the same time interfering with degrees of freedom where they are need-
ed to capture discrete lattice effects. In general, such a reduction in degrees of freedom
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cannot be carried out homogeneously throughout the material as is envisaged in many of
the decimation procedures of statistical mechanics. Rather, one imagines that the elimi-
nation of degrees of freedom must be tied to the local field gradients; thus, more degrees
of freedom will be removed where the fields are more slowly varying. This requirement is
met in our case via the use of graded discretization. Our mixed atomistic and continuum
scheme will be turned to two problems of the type alluded to above, namely, that of crack
tip deformation in the neighborhood of a crack blunted at the atomic scale, and secondly,
to the analysis of deformation involving interfaces. In the latter problem, we consider the
interaction of dislocations with a grain boundary.

METHODOLOGY

In earlier work (Tadmor, Ortiz and Phillips, 1996), the quasicontinuum method has
been shown to be a viable candidate as an alternative to lattice statics for the treatment of
the structure and energetics of defects such as dislocations. The basic idea of this earlier
treatment is the notion that one can think of an inhomogeneously deformed (and possibly
defected) body as a continuum which can be described kinematically entirely in terms of
displacement fields. However, rather than supplementing this viewpoint with traditional
continuum constitutive models, we instead exploit atomistic analysis as the basis of our
determination of the total energy of the body. One of the key advantages that emerges
from adopting this scheme is the existence of a multiple well structure to the total energy
surface which leads to the presence of dislocations.

In the present paper, we find it advantageous to cast our ideas in a different light
following Shenoy, Miller, Tadmor, Phillips and Ortiz (1996). The altered perspective lends
itself more easily to the geometric treatment of grain boundaries while remaining essentially
equivalent to the earlier description for single crystal problems. Rather than commencing
with a continuum outlook we adopt the view that our body is composed of some huge
number of atoms N, and hence that we must at the outset manage 3/V degrees of freedom.
From the atomistic perspective the total energy can be written as

Eezact =E(X1,X2,...,XN), (1)

where x; are the atomic coordinates. We see that the total energy depends explicitly on
the entirety of the atomistic degrees of freedom that are present. However, as a result of
the inhomogeneous strain field that is present in the body there are some regions where
one can imagine an approximation in which a subset of degrees of freedom can be replaced
and the resulting total energy can be written as

Ereduced = E(l‘l, I‘z,....,I‘M), (2)

where r; are the coordinates of the subset of atoms selected to represent the energetics
of the body (thus, M < N). The atams belonging to this reduced set are referred to as
representative atoms. It will be shown below that E,.guceq can be determined within the
confines of our atomistic model.
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Figure 1: Voronoi diagram and finite element mesh for the £7 boundary. Each vertex in
the figure on the left is a node (or representative atom). These nodes are used to represent
all the atoms within their Voronoi polygons, as shown on the right.

For the purposes of our model, we identify the r;’s at once as nodes within the finite
element setting and as a subset of the atomic positions. As within typical finite element
formulations, the nodal positions span a mesh, the various polygons of which are the ele-
ments (for the moment we restrict our attention to this two dimensional setting and choose
our elements to be three noded triangles). The system degrees of freedom are now the
displacements of these atom/nodes with the displacements everywhere else obtained by
FEM interpolation. We now imagine that the atoms which occupy each node will serve to
specify the energy in some sub region of the body in their vicinity, in particular, by deter-
mining the geometric dual to the finite element mesh itself (that is, by surrounding each
representative atom by its associated Voronoi polygon). For the purposes of illustration, in
fig. 1 we show the finite element mesh and associated Voronoi tiling that arises in a model
of a X7 grain boundary. Within the context of this formulation, the total energy of the
body can be written as

M
E;educed = Z:niEi- 3)

Here we have used F; to describe the energy of the representative atom of the i** Voronoi
cell and n; is the number of atoms within the associated Voronoi polygon. It is immediately
clear that in the limit that we fully refine our mesh (i.e., every atomic site in the model is
a node), each Voronoi polygon will only contain one atom and that our total energy will
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collapse to E.pqc.

The computation of the quantity E; which is the energy of the representative atom in
the i** cell presupposes an atomistic description that allows for a decomposition of the
energy as a sum of individual atom energies, i.e.,

N
Eeract = ZE1 (4)

Clearly, simple schemes such as those founded upon semi-empirical interatomic potentials
and many-body potentials all admit such a decomposition. For example, within the
embedded-atom method (Daw and Baskes 1983), which we have used here, the energy
of the i** atom may be written as

Bi= 350 6(R) + 1), (®)

J

where R;; is the distance from atom i to neighbor j, ¢(r) is the pair potential term,
pi is the electron density at the site of atom 7 and f(p) is the embedding energy. The
rigorous strategy followed here is to build a crystallite of sufficiently large radius around
each representative atom such that the energy of the central atom may be computed given
the potential cutoff radius. The geometry of this crystallite is dictated by the local state of
deformation. In particular, if we demand the position of the j** atom which is a neighbor
of the central atom of interest, its position after deformation is given

x; = X; +u(X;), (6)

where u(X;) refers to the displacement field at position X;, which may be obtained using
the finite element interpolation from the nodal displacements.

The interesting consequences of adopting this strategy becomes evident when examin-
ing the limits of very large and very small elements. Clearly, in the fully refined limit, the
energy of the representative atom becomes identical to that that would be obtained from
conventional lattice statics. On the other hand, for the larger elements, the elimination
of degrees of freedom has been bought at a price, namely, the fact that all internal atoms
are kinematic slaves of the nodal positions themselves. In particular, once the three nodal
coordinates have been specified for the element bounding a particular atom, that atom’s
position is unequivocally determined. This fact suggests an approximation strategy which
reveals the other expected limit of our model. Thus when a representative atom is expe-
riencing a near homogeneous deformation (i.e., the deformation gradients in the elements
surrounding the atom are nearly equal), the energy of the representative atom may be com-
puted from the local deformation gradients. Such atoms which are termed “local” atoms
correspond to the nonlinear elastic limit, and result in a significant computational savings
(see Shenoy, Miller, Tadmor, Phillips, Ortiz (1996) for details).

Once capable of determining the total energy of the reduced set of degrees of freedom,
their equilibrium configuration can be identified by minimizing this energy relative to the
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nodal positions using standard solution techniques such as conjugate gradient or Newton-
Raphson methods. One subtle feature that arises as a result of the multiple well structure
of the total energy as a function of the nodal positions is that the solution can depend upon
the initial guess for the nodal displacements.

ILLUSTRATIVE EXAMPLES

As mentioned above, the quasicontinuum method has already been successfully applied
to a range of problems involving dislocations. In this paper, we describe two more recent
applications. One problem of abiding interest is that of crack tip deformation and the plastic
deformation that attends it. A host of recent work, both analytic and computational, has
been directed at setting up criteria that can distinguish between the propensity of an
atomically sharp crack to emit dislocations and thereby blunt, or alternatively, to cleave
(see Schiotz, Canel and Carlsson (1996), Gumbsch (1995), Rice (1992)). Though most such
models make the limiting assumption of reduced dimensionality, as we do here, such models
may still serve as a testbed for the analysis of key questions such as whether or not linear
elastic analyses can shed any light on such small scale phenomena, and how changes in
crystal orientation and material parameters alter the inclination toward a particular type
of deformation.

One of the areas of particular interest of late has been that of the role of blunting in
inhibiting subsequent dislocation emission or cleavage. To investigate this question, we
have carried out calculations on fcc Ni using the same embedded-atom potentials as those
favored by Gumbsch (1995). As part of our analysis, it is imperative to allow for the mesh
to refine in response to the presence of severe deformations such as are anticipated at the
crack tip. As in our earlier work, the criterion that triggers mesh adaption is a simultaneous
evaluation of the second invariant of the Lagrangian strain tensor and the energy associated
with a given element. Our model is well suited to crack problems, which typically require
large simulation geometries despite the fact that all of the non-linear deformation remains
highly localized near the crack tip. The degree of freedom reduction resulting from our
model allows us to simulate blocks of atoms as large as 0.5um x 0.5um on a DEC Alpha
workstation, with each load step requiring less than an hour of CPU time.

Preliminary calculations on blunt crack geometries have exhibited both dislocation
emission and crack propagation processes depending on the crystal orientation, initial crack
tip geometry, and atomic potentials. However, the solution procedure is indeed subtle and
we have noted that entirely different deformation outcomes are possible depending upon
the size of the load step used. As an example of these preliminary calculations, consider
fig. 2 where we show a close-up of a blunt crack subjected to mode I loading. The full mesh
is approximately 0.5um x 0.5um, and at the boundaries we apply the linear elastic crack
tip field displacements. Like in the earlier work of Gumbsch, 1996, we see that this crack
initiates an atomically sharp crack at its tip, which propagates into the crystal. Because
the crack tip region is fully refined and non-local, all atoms in this region are explicitly
included in the energy calculation, and the energy of the newly created surfaces of the
sharp crack is implicitly accounted for.
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Figure 2: A sharp crack propagating from the tip of a pre-existing blunt crack in fcc nickel.
The figure on the left is the unloaded crack tip. The figure on the right is the crack after
several load steps have been applied.

Deformation in materials is invariably tied to the behavior of interfaces. Another area, in
which the method described here might serve to yield insights distinct from those rendered
possible by conventional analyses is in the study of grain boundaries. Of particular interest
are questions concerning how grain boundaries migrate in response to defects present in the
interfacial structure itself, and secondly, how do such boundaries control the transmission
of slip between adjacent grains. In particular, we have chosen to study the interaction of
dislocations with a grain boundary in aluminum (embedded atom potentials developed by
Ercolessi and Adams (1993) were used). The dislocations are generated by indentation on
the free surface and on nucleation, travel towards the grain boundary. The first frame of fig.
3 shows the snapshot of the atomic positions immediately after the initial nucleation of two
Shockley partials. It is seen that one of the partials is absorbed into the boundary and a
step forms on the boundary. The second partial is subsequently absorbed following a slight
increase in applied load. On continuing the indentation another pair of Shockley partials
is nucleated and they form a pile-up ahead of the boundary as is seen in the second frame

of fig. 3. This pair of dislocations is later absorbed at a higher level of stress produced by
further indentation.

CONCLUSION

Preliminary work in a number of different areas such as the static structure and en-
ergetics of extended defects such as dislocations and grain boundaries and the analysis of
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Figure 3: Interaction of dislocations with a £7 grain boundary.

deformation-induced plasticity suggest that the mixed atomistic and continuum scheme
presented here provides a viable alternative to traditional lattice statics allows for the
treatment of multiple scales simultaneously. Here we have shown how the method may be
turned to two issues of importance in the attempt to include nanoscale understanding into
plasticity and fracture. First, we have seen that crack tip deformation may be conveniently
evaluated with these methods, with crystal symmetry treated naturally. Secondly, we have
seen how the quasicontinuum framework may be turned to the question of slip transmission
at interfaces.
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