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ABSTRACT

Presented is a time-domain boundary element method for the simulation of dynamic crack
propagation in finite and infinite elastic domains. A fracture criterion is applied to deter-
mine the direction and speed of crack advance without any a priori assumptions regarding
the crack path. General loading conditions are possible because crack closure is taken into
account by solving the related contact problem. The governing system of boundary inte-
gral equations in time-domain is solved numerically by a collocation method in conjunction
with a time-stepping scheme. To check the accuracy of the solution procedure a straight
crack propagating at constant speed in a finite body is investigated first and results are
compared to those obtained by other numerical techniques. Examples of curvilinear crack
growth at variable speed showing the influence of stress waves and crack closure on the
computed crack paths illustrate the versatility of the method.
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INTRODUCTION

Fast running cracks observed in experiments or in real structures generally show a curved
trajectory resulting from loading conditions, specimen geometry and stress waves travelling
through the cracked body (Knauss & Ravi-Chandar, 1985; Ramulu & Kobayashi, 1985).
A realistic model for the simulation of dynamic crack propagation therefore requires the
temporal and spatial evolution of a crack not to be prescribed but to be controlled by a
physically meaningful fracture criterion. For the mathematical formulation and solution of
the problem that means that the crack trajectory itself must be determined from the anal-
ysis. Discretization with respect to space and time is complicated by the fact that at any
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time the future crack path is not known. Within the framework of linear elastodynamics
the problem description may be reduced solely to the body’s boundary and to the crack by
means of boundary integral equations (BIEs). Their discretization by boundary elements
which allow for an easy representation of curved and moving boundaries (e.g. crack paths)
is an appropriate numerical tool. Nevertheless, most approaches up to now are strongly
restricted — for example to prescribed crack trajectories — either from the kind of BIE
applied or from the chosen discretization. The aim of the present paper is to overcome
these deficiencies by a new approach applicable to rather general dynamic crack propa-
gation problems. It makes use of a non-classical derivation of BIEs proposed by Zhang
(1991) and a simple modelling of crack growth similar to that of Koller et al. (1992) who
treated the ’free’ propagation of a mode-III crack in an unbounded domain. The present
method has been successfully applied to two-dimensional dynamic crack propagation in
an unbounded domain under a variety of mixed-mode loading conditions (Gross & Seelig,
1995; Seelig & Gross, 1996). An extension to the more realistic situation of finite bodies
where interesting effects like the influence of stress waves reflected from boundaries can be
studied, will be given here.

BOUNDARY VALUE PROBLEM AND BOUNDARY INTEGRAL EQUATIONS

The problem under consideration is an isotropic linear elastic body B containing a crack
I'(t) which may grow with time (Fig. 1). The exterior boundary 8Be of the body
is subject to some time dependent loading and the crack is a surface of discontinuity
with respect to the displacement wu;(x,t). Initially the material is stress free and at rest
ui(x,t=0)=0, u(x,t=0)=0.
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Fig. 1 : Cracked body, B = 0Be UT(t)

Formulating the initial boundary value problem by boundary integral equations (BIEs) we
have to deal with the following boundary data: the displacements u;(x,t) und tractions
ti(x,t) = 035(x, t) n;(x) on the exterior boundary (x € 0Be) and the jumps in displacement
Aug(x,t) = uf (x,t) — uj (x,t) (see Fig. 1) on the crack (x € ['(t)). Here, o0;; denotes the
stress tensor and n; is the unit normal vector as indicated in Fig. 1. The crack faces
are assumed to be traction-free or subject to some contact stress in case of crack closure.
Thus, the traction vector t!(x,t) on the crack is always continuous. The initial boundary
value problem can be expressed by the following system of coupled time-domain boundary
integral equations:
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A superscript G denotes the fundamental solutions (elastodynamic Green’s functions) for
displacement and stress, Cpqx is the elasticity tensor, p the mass density and super-
script dots indicate derivatives with respect to time. In points of a smooth boundary
cki(x) uk(x, t) reduces to ui(x,t). The derivation of BIEs from integral identities (‘conser-
vation integrals’) is well known from literature (‘direct method’). BIE (1) — called the ‘dis-
placement equation’ because of its left hand side — follows from the classical Betti-Rayleigh
reciprocal theorem (Eringen & Suhubi, 1975). The ‘traction equation’ (2) is obtained using
an alternative integral identity of linear elastodynamics proposed and successfully applied
to stationary cracks in unbounded domains by Zhang (1991). In contrast to traction BIEs
derived from the Betti-Rayleigh theorem eqn (2) is non-hypersingular which simplifies its
numerical treatment. All integrals exist at least in the Cauchy principal value sense.

In case of frictionless crack face contact the traction vector on the crack is t:(x, t) =
p(x,t) np(x) where the contact pressure p has to be determined from the constraint of
vanishing material penetration. A penalty method is applied to solve this contact prob-
lem approximately. Therefore the contact pressure is assumed to be proportional to the
‘forbidden’ material penetration

p(x,t) = 02_,, (Aun(x,t) — |Aua(x,t)]) Auy(x,t) = Aui(x, t) ni(x) 3)

with a penalty stiffness ¢, much bigger (x10%) than the elastic stiffness of the body. Ob-
viously p vanishes when the crack is open, otherwise eqn (2) becomes nonlinear. Taking
into account some frictional stress depending on the contact pressure would produce no
difficulty.
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NUMERICAL SOLUTION PROCEDURE

In the following the analysis is restricted to two-dimensional problems reducing 8B,, and
I'(t) to a closed and an open curve, respectively. Only one-sided propagation of the crack
is investigated (Fig. 1). Both boundary curves are approximated by polygons consisting
of elements of constant length Ay, on 8B and Ayr on ['(t). Equidistant time steps
tm = mAt and 7, = nAt (n=0,..., m) are chosen to discretize the current time ¢ and the
past 7 appearing in the temporal convolution. The number of elements E, on the exterior
boundary is fixed whereas the number of crack elements Er(m) increases with time when
the crack grows. Due to the different element lengths on 8B, and I'(t) a finer mesh may
be used on the crack. But for a good temporal resolution the smallest element size should
be chosen such that min Ay > c; At where c; is the longitudinal wave speed. On the
other hand, too small values of At may cause instabilities in the solution at large times.
A piecewise constant spatial approximation is chosen for all boundary data except at the
crack tips where square root shape functions serve to model the proper asymptotic be-
haviour of the displacement jumps: Au;(r,t) ~ /7 (r : distance from crack tip). The
temporal variation within each time step is taken linear for displacements and displace-
ment jumps and piecewise constant for the tractions.

Inserting these spline approximations into BIEs (1) and (2) and applying a collocation
method leads to a system of algebraic equations for the unknown coefficients in the bound-
ary data approximation. In each time step the unknown coefficients are determined by
those computed in previous time steps and the given boundary data. The system of al-
gebraic equations to be solved in each time step is nonlinear in case of crack face contact
and then can be treated by a Newton iteration.

FRACTURE CRITERION AND MODELLING OF CRACK ADVANCE

The dynamic stress intensity factors at a running crack tip are given by the computed
displacement jumps Au,, Au; normal and tangential to the crack and universal functions
of the crack tip speed a (see e.g. Freund, 1990) :

Aug (7, t)
—\/_T— ; 4)

Due to the /7 - crack tip shape functions they are determined directly by the coefficients
of the displacement jump approximation on the crack tip elements.

Via the stress field at the moving crack tip the SIFs enter the fracture criterion of Erdogan
& Sih (1963) applied here. It is widely accepted in application to brittle fracture and states
that crack advance will take place in the direction ¢, of maximum circumferential stress
0, when this stress reaches the same critical value as in pure mode-I

Ky 11(t;a) = krrr(a) 11_{%

©®)

max”«p(‘/’?d,K},Kn)—ow(<p:0;<'1,K1c){20 for a>0}

<0 for a=0

The angle ¢ is measured from the tangent at the crack tip. For a propagating crack the
value of @ is such that the equality in (5) holds. The critical stress is represented by the
dynamic fracture toughness Kj. = K, (a) which as a function of crack tip speed has to
be determined experimentally.

Crack growth is modelled by adding a new element of constant length to the moving crack
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tip whenever condition (5) is violated. By virtue of the restrictions on crack tip speed and
space-time discretization ( @ < ¢, < Ay/At ) this can take place only after several time
steps have passed, say at discrete times tm,_,,%m,,... . Therefore the crack tip speed can
be determined only as the average value over the whole interval between two such instants
of discrete crack advance:

Ay _ Ay
me tmk_l At (mk — mk_l)

a(t) = ; for t € [tmu_stm,) : (6)
For the same reason the dynamic SIFs (4) are averaged from the last instant of discrete
crack advance on (here t,,, ) before entering the fracture criterion. After the onset of crack
growth (a > 0)

1 tm
Bilt) =g / K(t) dt @)

St

can be regarded to be the SIF at time t,, consistent with the discretization. From (6) the
crack tip speed can be determined only for a time interval between two known instants of
discrete crack growth. The evaluation of the fracture criterion at any current time therefore
requires an update of the crack tip speed and must be performed iteratively.

The discrete modelling of crack growth chosen here is similar to that proposed by Koller et
al. (1992). It is a rather rough approximation, but in contrast to methods using ‘moving
singular elements’ (see e.g. Gallego & Dominguez, 1992) it requires no remeshing.

RESULTS

All physical quantities are normalized appropriately and illustrations showing the prob-
lem under consideration are true to scale.

Crack Growth at Constant Speed

The accuracy of the presented method in application to crack propagation in finite bodies

is checked by solving a problem which has been treated before using different numerical
techniques. A rectangular plate containing initially a central crack of length 2a,
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Fig. 2 : Center-cracked plate Fig. 3 : Dynamic mode-I SIF
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(b:h:2a =26:1:0.6) is uniformly loaded by a traction of Heaviside-function time
dependence (Fig. 2). At time t* the crack starts growing at constant speed ¢ = 0.29 ¢
in its original direction. There is no fracture criterion involved here. Figure 3 shows the
normalized mode-I SIF versus dimensionless time in comparison with numerical results by
Nishioka & Atluri (1980) and Gallego & Dominguez (1992) who applied a finite element
method and a boundary element substructure technique, respectively. The results are in
good agreement.

Crack Growth Controlled by a Fracture Criterion

For the dynamic fracture toughness the relation shown in Fig. 4 which is typical for steel
and other moderately brittle materials is used in the following examples. The steep in-
crease of K1, (a) at about 40% of the shear wave velocity cr results from micromechanisms
not considered here in detail and acts like a barrier to the crack tip speed.
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Fig. 4 : Dynamic fracture toughness

Stress Wave Induced Crack Curving. One reason for crack curving observed in brittle solids
is the presence of stress waves travelling through a cracked body, being reflected at the
boundaries and altering the stress state at the moving crack tip at different times (Knauss
& Ravi-Chandar, 1985; Ramulu & Kobayashi, 1985).

axHb)

gl hl — a L (0)

Fig. 5 : Crack curving due to reflected stress waves;
a:01=0, b: 0] =03, c: 0f =1.50;, d: o} =20,
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Figure 5 shows computed crack paths in a rectangular plate of height h with a slightly
inclined initial crack (5°, thick line) for different ratios of biaxial loading. Because of the
fracture criterion the crack always tends to propagate under mode-I conditions. So, for
uniaxial loading of amplitude o3 (curve a) it remains parallel to the horizontal boundaries.
Of course, additional tractions of amplitude o} applied on the vertical boundaries lead to
slightly different angles of crack initiation. But two strong changes in crack propagation
direction (clearly to be seen at curves c and d) take place at later times t ~ 1.5h/c; and
t =~ 2.5h/cy. At these times waves of amplitude o} generated at the upper and lower
boundary at ¢ = 0 and reflected ones and twice, respectively, on the opposite sides reach
the middle region of the plate, i.e. the crack. The sudden changes of the state of stress
and hence the preferred direction of crack advance at the two indicated times can easily
be explained from a simplified one-dimensional consideration of ¢3-wave propagation in an
uncracked plate. Each of the two waves coming from the upper and lower boundary carries
a jump in stress of 3. Thus, the stress in 2-direction in the middle of the plate drops from
2 03 to zero at their arrival after the first reflection and jumps back to 2 o3 after the second
reflection.

Influence of Crack Face Contact. The pressure loaded square plate with an inclined initial
crack (45°) shown in Fig. 6 serves to illustrate the influence of crack closure on the com-
puted crack path. When correctly modelled — i.e. by solving the related contact problem
— crack initiation takes place under pure mode-II conditions with an kinking angle of ap-
proximately 70°. The wing pattern of the resulting crack path is well known. Neglection of
crack face contact leads to crack initiation with a physically meaningless negative mode-I
SIF and results in a totally different crack path (dashed line).
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Fig. 6 : Influence of crack face contact Fig. 7 : Crack tip speed

The temporal evolution of the fracture process up to crack arrest can be studied approxi-
mately from Fig. 7 where the computed crack tip speed versus time is shown.
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CONCLUSIONS

A numerical method has been presented which enables the simulation of rather general
dynamic crack propagation problems in finite and infinite elastic domains. Although very
simple interpolation functions and only a rough approximation of crack growth have been
chosen the solution procedure proved to be of sufficient accuracy when compared to other
techniques. By consequently exploiting the advantages of the boundary element method
it is a reasonable tool to investigate complex phenomena of dynamic fracture on a macro-
scopic level.
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