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ABSTRACT

Based on finite element analyses, a set of formulas for estimating the crack tip opening
displacement in terms of 8, in creeping materials and C" for three fracture specimens in both
plane stress and plane strain’ conditions are presented. Validation of these formulas has been
performed for different creep laws. It has been shown that: (1) The creep 6, formulas
accurately match finite element results; (2) The 8,° is independent of the material’s creep law;
(3) The calculation of creep 6,°, and the creep fracture analysis based on &8 are very
convenient. They can be done by use of the nominal net section stress defined by the limit load
of the cracked body and the original uniaxial creep curve at the corresponding net section stress
level; (4) Due to (2) and (3) the 8, is a promising parameter for creep fracture analysis; (5)
Under steady-state creep and constant loading conditions, C' is path independent for creep
materials defined by & =Do,"t", and for creep strain hardening materials defined by
: =(AG, ((m+1eg)")""; (6) In the case of C-path independence, the provided C’-
formulas match accurately finite element results.

1. INTRODUCTION

In recent years, several procedures for the assessment of defects at high temperature have
been developed [1,2,3]. These are based on evaluations of the crack tip parameters, such as
stress intensity factor K, C’-integral, or related C(7) and C, which are the generalization of
C'. and the material data describing creep crack initiation and growth. The K parameter may
find application only for very creep-brittle materials and small scale creep. A number of
experimental results on creep ductile materials [4,5,6] showed that the C’-integral is an
effective parameter for creep ductile materials.

The C'-integral, upon modifying the J integral as a parameter to represent the amplitude of
the stress strain field ahead of a crack tip is successful only when the material is purely viscous
which corresponds to secondary, or steady state creep. C' is subject to the same restriction as
the J integral with regard to path independence. When the creep rate is defined by Norton’s
law

£=aqao"
the value of C* may also be calculated from the finite element solutions tabulated in [7]. This
specific stress-strain rate relation is convenient for analytical purposes, but is not a prerequisite
for the validity of C* [8]. In general cases, finite element analysis is required for obtaining C”.

The actual situation for the creep fracture analysis is that there is not a single parameter
available for the whole creep process including initial, secondary, and tertiary regimes, and no
simple method to predict C” but Norton’s law.

As compared with C”, the parameter of crack tip opening displacement (CTOD) is rarely
used in creep fracture. The reason may be due to the following facts: one is the parameter being
difficult to measure in practice, and the other is that there is no strictly analytical solution for
predicting CTOD. To overcome these difficulties, the Engineering Treatment Model (ETM) was
developed for piece-wise power law materials [9,10]. In the ETM, a special definition of CTOD
was used, which measures the CTOD at the specimen’s side surface, spanning the original
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crack tip over a gauge length of 5 mm, and which is therefore termed &,. This definition is
numerically close to values determined after BS576 [11].
estimating 8, and J integral are also provided. Extensive v.
performed so far on laboratory specimens [9,10] and fract
[12,13]. Recently, under deformation theory of plasticity and
ETM has been extended to pure power law as well as non-power law materials, and therefore
proved that the ETM-concept is valid over a wide range of materials [14].

The CTOD parameter is less restrictive than the J or C' integrals. Following the ETM-

concept, the two inherent shortcomings mentioned above may be overcome. The CTOD in
terms of §, may become a promising load parameter for the fra

cture analysis in a wide range of
creep behavior.

In this paper, the ETM formulas are developed based on finite element analyses in order to
obtain approximate but accurate estimates of the CTOD in terms of J.° in creeping conditions
and C" for three fracture specimens. Validation of these formulas has been performed for
different creep laws. All the calculations are carried out using the ABAQUS code.

A set of simple formulas for
alidation of the ETM has been
ure analyses of structural parts
monotonic loading conditions the

2. CREEP ETM FOR CTOD IN TERMS OF é,°

2.1 Creep Deformation Behavior Described by 4.

Based on a large number of creep FE-analysis on three test specimens,
deformation behavior described by &.° as 1 function of nominal net section strain, €,
in Fig. 1, can be summarized as follows:

(1) After initial non-linear response, §,°
strain €, . The slope of the straight line is ind
crack length (Fig. 1(a)),

the creep
as shown

is a linear function of the nominal net section creep

ependent of the net section stress, o,, for a given
but is strongly crack length dependent (Fig. 1(b)).
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Fig. 1 8,"-¢€. curves for a CT specimen at different stress levels (a) and for a CT specimen
with different crack lengths at the same stress level calculated by FE-analysis. (yield stress o,=515
MPa, elastic modulus £=97000 MPa for a Titanium alloy).

(2) The initial non-linear part in the &
defined as initial strain, see Fig. 1(a)). The
and crack length (Fig. 1(b)) dependent.
(0o, is the yield stress), the non-linear p

versus £ _disappears when € =g, (g,=0,"/E
amplitude of the non-linear part is stress (Fig. 1(a))
When the applied nominal net section stress o, =0,
art o the &, — &, curve vanishes altogether.
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ation stages,
The above creep deformation behaviors correspond to t;vo tcreer.)‘i ;i:fc;rer;p s gthe
iti i d creep stages. In the transi ] S

: transition creep and widespread c ' stage, the

garfr;iiation behavior is controlled by elastic and creep strains a‘pd thel.(:-::rkﬁt;:mion 0% e
steress redistribution and blunting. In the widespread creep stage, 621 astaz:e 1cmep

net section creep strain gives an unequivocal de§cnptlon of the stea y—sd < Wid.cspread e

The requirement for the stress redistribution to be complet.e. an 1 the widespread creep
conditions to be established may be expressed in terms of a transition tme 7.

St ¢
results, ¢, can be determined in terms o "
e(o,t,)=¢,.

This is in agreement with the definition proposed by Ainsworth [15].
2.2 Formulas for Predicting Creep 6.

i i ¢ xpressed as:
Based on the observations summarized in the above section, creep 6. can be exp

5C non-lincar

‘ 2-D

8 = gq, + 6‘65 (2-2)

6“- = O, cumar O oun i (2-3)

5. =(W-a)B(Re, for £,< € (2-4)
5C linear _ (W _ a)nl(l)nﬂ(a)(l - CXP(—4£‘_ /E“)) O 0 Y

for g, 2 €, (2-5)

script initi he start of creep deformation and the
ipts 0 and C denote the initial value at : _
thcredthe tzu:::;)[i)nsg respectively. &, can be estimated by the elastlc-plasn;: ETgit[iz]. é? g]e
brese tus‘iud itis cal’culated by FE—ahalysis in order to cl?eck the accuracy 0 tphre et g = :t
l()lrieseI(IZ-Z)).y’The nominal net section creep strain, €, 18 detemm;ed ir:mlawe:i . useg o
no?x:linal net section stress. To formulate Eq. (2), a general form of the creep .
8‘ - Do."th’ . . i P
in which D, N and p are material constants. In Eq. (2) &, 1s the nominal net section initial
strain, i.e. at ¢ =0, defined by -
g,=0"1E
and g &
E,=0
: Y i i ’s modulus.
is the nominal net section yield strain at which o, =0,, and‘ E 1sf.lhedYboung s modulu,
In Egs. (3) and (4), the nominal net section stress, 0,, is defined by ©
o, =Fo,/F . .
where F and F. are the generalized applied load and limit load, respectively. The formulas of
ecir;xens used are given in appcndnf A. . .
F, f?rrl::cniﬁmalized factors B(A) and 1,(A) in Eq. (2) are fl_lnctlons gft . nf(:;:r::)arh:,,e?asr;clz
A=a/W (a is crack length, W is the width of the specimen), and the z 2
1feng?l’n o; ?hc normalized stress, o =0 /o,. Based on finite element analyses, they can
unctiol , 1o,
expressed as:

For Three Point Bend (TPB) specimens,

} (7-1)
A)=0.9081—1.47764 +1.2518% ‘ :
g((/l)) =0.0052+0.01922 + 004294 —0.0479X ((;g))
1.(cr) = 0.0001 +0.1220¢ — 0.03170¢’ — 0.0904cx
f lane stress, and 2 ‘ _
o B(A)=0.309+0.02954 ~ 0.0247% +02094° ((:; 12 ))
n.(A) = 0.0231 +0.05644 — 0.2161%° +0.18594

n.(cr) = 0.0732a — 0.0454a — 0.0279¢¢’ (8-3)
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for plane strain.
For the Compact Tension (CT) specimens

B(A)=2.41-10.731 + 24.382° - 24.911' +9.681*

9-1
7,(1)=0.0213-0.1646 1 + L1SO3X -2.07594" + 1.14394* ((9—2))
m(oz):O.OOl+0.1041)z—0.1050t3 (9-3)

for plane stress, and
B(A)=5.61-40.081+1 13.154° -136.294' + 59 64 1* (10-1)
1(4)=0.0156 +0.2452 1 — 0.68634° +0.5955 (10-2)
7]:(a)=—0.0167+().]61a—0.2580:1+O.l13011 (10-3)
for plane strain.
For the Center Cracked Tension (CCT) specimens,
B(A)=0.1965 + 2.7054A - 4.76471 + 3. 19481 (11-1)
n,(/l)=O.O()45+0.Ol]01+0.0402/13 (11-2)
nz(a)=—0.0321+0.344a—0.515a1 +0.203’ (11-3)
for plane stress, and
B(A)=0.0714+1.12961 — 2.00752 +1.37281 (12-1)
7,(1) = 0.0078 + 0.04181 — 0.11484° +0.1581 (12-2)
n.(a) =~0.0083 + 0.1424¢¢ — 0.128¢¢° (12-3)

for plane strain,

2.3 Basic Characters and applications of §°-ETM.

As examples, comparisons between the 6. predicted by Eq. (2) and FE-analyses are given

s in plane stress condition, and in Fig.

V4 0x00 FE-esulls; plane stress. 09
—— CreepETM, Eq. (2).

VA0X00 FEresults; plane shan, ]
— Creep ETM, Eq. (2). c,ycv=0.690,

A aW=01. o aW=05
o0 aW=02, aW=07.
- 0.40 080 | o ams I
£

v Jn/0,=0.218
A c"/cv=o.436
a Un/0v=0.567
x  On/C 0742
o Gn/GY=0873
o

0.40

On/C,=1003

. 00 &
'%_o 0.01 0.02 003 0.0 0.005 0.01 0.015
& (a) €, (b)
Fig. 2 Comparison between &, calculated by Eq. (2) and FE-analyses:

(W=50 mm, a/W=0.5) at different stress levels, and (b) for CT speci
different crack lengths.

0.02

(a) for a CT specimen
mens (W=50 mm) with

Because 6., inEq. (2) is only net section creep
applied load, it should be independent of the cree

» and in Fig. 3(b) for varying time index, p, of the creep

Based on the same ar
creep law defined by

& = A(sinh(c, /0,))*

gument, Eq. (2) is creep law independent as shown in Fig. 4(a) for the

(13)
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and in Fig. 4(b) for a creep strain hardening material defined by

= (14)
" mer
£ = {Aan”[(m +De | }
J rv O+ © o x FE-results ©r/0,=0.583.
3908 O,/ =1003. | s s o |
8 & afee i 9:" ’ c:/(’vzo 873. 0.60 Z) £.-2 754E-17 G439 02 plane stress
5o EESEJBG"S 08, O/, 0567 +  Ec=2.754E-17 5,49 104
060 o Ec=6.885E-180an =i 3 et
€ e, O Ec=6885E-18.0,:
€ A O O FE-results. 0do0| © Bt sonirn,
£ 0.40 ] Creep ETM ,Eq. (2)
‘Tn | plane strain |
) 1 0.20
CCT (W=100 mm, a/W=0.5)
=0,5); tress. "
S a/W_OIVS)Y = 03 0.001 0.002 0.004 0.01 0.02
0. § .
0'%9001 0.002 0.004 0.01 . )
€ (a)
c

S I angi i index (b) in
Fig. 3 &.-ETM is valid for changing stress index N (a), and for changing time in P

ig' s~ *

the creep law of Eq. (3).

- T

Creep law: € ={Ao.‘[(m+l)e‘] }"‘ a/]

(A=5508E—-18, N=49, m=-02) .

—— Creep ETM, Eq. (2).

A O O FE-results.

7 I & ono,=0768.
BAO)- & G A

0 0,/0,=0.256.
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Fig. 4 8. -ETM formula (Eq. (2)) is also valid for different creep laws.
ig. -

3. CREEP ETM FOR THE C’-INTEGRAL

P dicting C".
3.1 Formulas for Pre . . o
The C’-integral, defined in analogy to the J-integral, was introduced by Lan
e C-i s
Begley [16]: 20 .
C' = [ (Wdv-T,—*ds)
; ; > i i th T", « the components of the
ith the components 7 of traction vector on an mlegrauonbpa ,
e s T nfege
:jvils*placemem rate vector, the stress work rate W" is given by e
o e i is path-i in nonlinear
h-independent gor the same reasons that the J-integral is path-independent in
C’ is path-indep s
el“lg m::lljlr(l)“;l)sl.with J calculation, the C* parameter may be expressed as [17]
y an:
C'=0,¢(0,)L(a,AE) - vy e
€ is the creep strain rate at the net section stress, and L(a,A,g,) is a geometry
e £ 1is g : _ -
r::l;; dei)endent characteristic length, and can be written as

L(a,A,e)=(W-a) (L& (g)

(17-1)

(17-2)
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Based on finite

element analyses
For TPB specimens wmalyses, &(4) and ¢.(€.) can be expressed
&b as:

£(A)=1.267
S(e)= 35779133 10292 -9.5354% +18.86572 _ 10 38150
Oexp(—(g, +O.Ol6898)/0.001618)+O§8875/1 (18-1)

for plane stress, and
i (18-2)
ége‘)) :(;75335 8—&9(883/1 =0.55841' +0.01 704
N P—(€ +0.01 8192)/0.001 766)+0.9764 80
For CT specimens -
§(A)=3.7649 —
e ;0_()1@5,;;2?::39.60391} =25.98121' + 8.5422
ol e 3 .045658)/0.00363) +0.9536 g
e (20-2)
2 295956561 34;(1 0(/1.+ 337490 37569 1" +154.58*
o (g + 0.010158)/0.00263 1) +0.9687 i
(21-2)

For CCT specimens

U l =
gég)) =(;.(;§j;§0+63.8467/1 —6.4236 4’ +3.5724 1
(€ Oexp(-(g +0.020928)/0.001532)+0 9891 =)

for plane stress, and
e A (22-2)
z (8‘)) - 6;)175%3] le;- l(.8 104 -3.0305,° + 1.69451
e P(=(e. +0.01 1063)/0.002659) +0.9497 s
(23-2)

3.2 Basi i
asic Properties and Applications of ¢ ETM

Dy
S exam (le)s C()lllpdrlSOnS be[WCCll the (& pledlC[Cd by Eq (1 7 and FE anal yses are
g Ve]l(”l)Flg. > a) for a (:(j] Specimen at dlfferent stress levels n plane S)UCSS C()“dl[l()ll, and n
g or Spec § 1t dlfferent crack le gLhs P S S
mens w n Sin 1 LA ShOWll n
F 5(b for ( CT h th I"lne Strain condit on S ¢

5 i
1 can accurate] re chate FE ICSU“S Silll“dl COl.llCldellCe 1S IOUlld for lFB and
d

SR

VaADXx o e ne str v =
E-results; plane stress. On/0
Fi =0.194

102 Creep ETM,
,Eq. (17). : gjgfo_gea OO0V X0  FEresuls,
X e Croep €T, Ba. 7y -
g awor 7
o aW=03

On/0,=0.971

aW=0.65
aW=08

]
x
v aW=05
o
o

-

104

Fi ;
j l/;/g= lSOOCompanson between C* calculate
e mm, a/W=0.5) a differen: g
9 mens (W =50 mm) with diffe :
€ =6.885E~18g 1) ‘
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Because C in Eq. (17) is net section creep strain and its rate dependent for a given

geometry and applied load, it is valid for changing stress index, N, of the creep law (Eq. 3) as
shown in Fig. 6(a), and for changing time index, p, as shown in Fig. 6(b).

Figure 7(a) shows that for creep strain hardening material C” is path independent, and the
C*-ETM formula (Eq. (17)) is valid.

For creeping materials in which C’ is path dependent, C'-ETM formula gives a similar
prediction as one of these path as shown in Fig. 7(b).

R B [

103 C
- 101M 4 Rwoag
=l LN
E 107! 7B { vOoOn FEesuls
E 100 —— CreepETM, Egg(m.
2z - L v €.=5508E-18 G," "t
~ 103 A £.-6.885E-180,3 %08, 0,{0,=1.003.| | -10[ % £.-2.754E-17 049 02
L, 10 ¢ n v 10 . o n |
O |0 €.=6.885E-180,4 %08, 0/0,=0.873. " o E2TSEATG,° o4
E o €c-6885E-180,°%" %, 0/0,=0567 E " O Ec=9.180E-180, T° N
105} A0 0 FE»resaIts_ 1013 I
t ——  CreepETM, Eq. an. G/0,=0512 o
107 S 1018
00.000 0.01 0.02 0.03 0.0 0.02 0.04 0.06
Ec (b)

€c (a)

culated by Eq. (17) and FE-analyses: (a) for a CT specimen

Fig. 6 Comparisons between C’ cal
(W=50 mm, a/W=0.5, plane stress) with different stress index N in Eq. (3), and (b) for TPB
specimens (W =100 mm, a/ W=0.5, plane strain) with different time index p in Eq. (3).
" k..n'“ 104} Creeplaw: Yt = A(sinh(a, /6,))"
101} Creep taw: & ={aa.’[(m+e | } : (A=SSO8E-12. N=55 0, =5150MPa)
o, (A=5508E-18, N=49, m=-02) 6| —— FE-results for different C’-paths.
} _ FE-results . 10
e 107 S 10 Nemmmzmncoos o o a8 oo o o
g B - AAAA A A A A _A A __A A A
= |a o O CreepETM, Eq. (17). 10710 IS
* 5 103 A 0n/0,=0.768. 1 A o O Creep-ETM, Eq. (17)
© O 0,0,=0584. 12 & On/G =0.667.
L»M [0 G y=0256. 10 veno o 0 OWO,=0.464. \
[e) G"IGY:O 145.
105 —— — , - 1014 . 7
0.0 0.05 0.10 015 7 0.0 0.05 0.10 0.15 0.20
g, (a) & (b)
reep ETM and FE-analyses for a TPB specimen

Fig. 7 Comparisons between C* predicted by ¢
(W=100 mm, a/W=0.5, plane stress): (a) for a creep strain hardening material, and (b) for
creeping materials in which C" is path dependent.

4. CONCLUSIONS AND DISCUSSION
(1) When the net section creep strain is larger than the initial net sectio

is reached. 8. as a linear function of the net section creep strain gives an

e creep.
dependent of the creep law of the material, creep law

process including initial, secondary.

state creep condition
unequivocal description of the steady-stat
(2) The creep 8,°-ETM formula is in
parameters, and therefore can be used in the whole creep
and tertiary creep regimes.
(3) For a stationary creep crac
element results.

k, the creep 8,-ETM formulas accurately replicates finite

n strain, a steady-
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(4) The calculation of creep 6 is vVery convenient. The only parameter required for the
calculation is the limit load of the cracked body. Because creep 4. is creep law independent, a
closed form of the creep law is not necessary for practice, and the creep strain needed for the
calculation can be directly determined on the original uniaxial creep curve at the corresponding

(5) The creep fracture analysis based on creep 8. is sensible and convenient. From the
critical 8¢ values of creep crack incubation and creep crack rupture, the corresponding critical
creep strains can be determined by Eq. (2). The creep crack incubation time 2, and creep crack
rupture time ¢ can be determined from the given creep law or directly determined on the
uniaxial creep curve at the corresponding net section stress level.

(6) Under steady-state creep condition defined by Eq. (1), finite element analyses show that
under constant loading condition ¢* jg path independent for the creeping materials defined by
Eq. (3) and for creep strain hardening materials,

(7) In the case of C"-path independence, C*-ETM formula accurately replicate finjte
clement results.

(8) As compared with 8, Cis Subject to more restrictions for engineering applications,
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Appendix A

For the limit load the following formulas were used:
For Compact Tension specimens,
£, =n,0,BW ‘ (Al-1)

with
n, =\/2.155*(LO+1.!55(a/W)Z)—l—HSSa/W (A1-2)

for plane stress, and
b, = 1155(32.7+ 4.59(a/ W)? -1.0-1.7a/w) (Al1-3)
for plane strain.

For Three Point Bend specimens,

K =n0,BW(-qa/ Wyrs (A2)
with n, =1.072 for plane stress, and 1, =1.455 for plane strain.
For Center Cracked Tension specimens,

K =20,(1-a/W)BW (A3)

" for both Plane stress and strain conditions.
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