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ABSTRACT

A thermal stress field induced by localized temperature change in the vicinity of crack tip
often causes crack extension. Taking advantage of this phenomenon, some glassy mate-
rials can be cleaved without any cutting tool but adequate controlling of a temperature
distribution in the body. In the present paper, based on the plane thermoelasticity and
linear fracture mechanics, a time dependent thermal stress intensity factor of a line crack
pre-introduced from the edge of a thin plate was investigated when the ahead of the crack
tip was heated locally by a continual point heat source. It was found that the most suc-
cessful heating position for the thermal stress cleaving is strongly affected by the width of
the strip but is almost independent from the crack length or other geometric conditions.
The present calculation was compared with the experimental results and good agreement
was found.
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INTRODUCTION

Machining the brittle materials, such as glass, ceramics and silicon wafer, using the ordinary
mechanical methods sometimes causes serious damage on the generated surfaces. In such
a damaged surface, micro cracks and high degree of residual stress are commonly observed.
On the other hand, by utilizing a thermal stress field induced by a local temperature rise
in the vicinity of the main crack tip, not only highly strong surface without any micro
cracks can be obtained but also a waste-less, noiseless and clean processing of the glassy
materials can be achieved (Chryssolouris,1991; Imai et al.,1989).
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In the present paper, dividing the semi-infinite strip using a continual point heat source
shown in Fig.1 was investigated in the extent of plane theory of thermoelasticity.

THERMOELASTIC FIELD INDUCED BY AN ISOLATED HEAT SOURCE

The axisymmetric temperature distribution T°(r, t) and resulting thermal stress field o7 (r, ?),

o3(r,t) due to a continual point hea: source applied to a thin infinite elastic plate can be
written in the following forms.

Pty = L[ lrtfai=n)

o o r W

1 T o
alrd) = —aE-ﬁ/U T°(R,t)RdR (2)
ylead) = —aE-T°(r,t)+aE~:—Zj;ri’o(R,t)RdR 3)

Where, r is a distance from the poiat heat source, t is a heating time, @ is a magnitude
of heat source per unit time and per unit thickness, A is a thermal conductivity, E is a
modulus of elasticity, & is a thermal diffusivity and « is a linear expansion coefficient of the
material. When the plate thickness is sufficiently thin, the temperature in the direction of

plate thickness is regarded uniform and the resulting thermal stress field would be in the
ideal plane stress state.

The upper and lower edges and the end of strip are assumed to be thermally insulated. In
order to get the temperature field of the strip, Eq.(1) may be superposed periodically as

shown in Fig.2. Thermally insulated boundaries can be achieved on the dashed lines due
to symmetry.
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Fig.1 Cleaving of a semi-infinite strip using a point heat source
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Fig.2 Method of getting the temperature field in the strip.
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THERMOELASTIC FIELD INDUCED BY THE PERIODIC HEAT SOURCES

The thermoelastic field due to the infinitely periodic heat sources in Fig.2 can be ob?ained

simply by superposing the thermoelastic fields due to the point heat sources actfng at

(£L,£2nW), (n = 1,2 .++). The final expression for the field may be written in the
b >} , b

cartesian coordinate system as,
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Where, X; = (z — L), X2 = (z+ L), Ya =y — 2nW and r?, = X} + Y. Ei(e)is the
integral exponential function defined as,

00 p—T
Biw) = [ Sde (8)
u T
Note that the effect of heat dissipation from the plate surface was omittetd s.imply beca.use
the present analysis concerns only the thermoelastic behavior in the beginning of heating,
and the heating time ¢ is restricted considerably short. For the large value of u, E;(u)
behaves as e~*/u (Abramowitz and Segun ed., 1968) and vanishes rapidly. Consequently,
the sum up to £oo about n can be replaced by the sum up to some finite number N. The
remaining term involved in Eqs.(5),(6) can be calculated with the help of the following
formula (Moriguchi,et.als., 1992).
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It is assumed that the crack opening displacement induced by the infinite arrays of poin.t
heat sources is considerably small and hence, the temperature field is unchanged even if

the crack opens.

SOLUTION OF ISOTHERMAL ELASTIC PROBLEM

The thermal stress field due to the infinite arrays of heat sources does notl satisfy the streﬁs
boundary condition. In order to remove the stresses along the boundary, 1so.therma1 ela,st_lc
field must be superposed as shown in Fig.3. Stress Intensity Factor (SIF) is ?omputed in
the isothermal field whose stress boundary value is obtained from the condition that the
traction along the boundary after superposition should be zero.

In order to solve the isothermal problem, the Body Force Method (BFM) fo.r two din_len—
sional elastic problem was used. The BFM is one of the boundary type numerical technique
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for stress analysis and first proposed by H. Nisitani (1967). As far as author’s knowledge,
BFM is the most desired numerical method for crack analysis, and moreover, highly accu-
rate solution can be easily obtained. In BFM, the boundary of the body is approximated
by several boundary elements, as the same manner in usual Boundary Element Method.
The boundary discretization for the present BFM is shown in Fig.4, where the linear ele-
ment was used for the upper half region above the symmetric axis. The upper edge was
represented by usual linear elements in the extent of 15W and one semi-infinite boundary
element for the remnant part.

The body force doublet(Nisitani and Chen, 1987), which means discrepancy of displace-
ment, is continuously distributed along the crack part as the form of product of the basic
density function(Nisitani, 1978) and the weighting function. The basic density function for
the crack problem expresses in itself the exact crack tip singularity, and therefore, deter-
mination of the weighting function through the discretization analysis becomes simple and
easy. SIF can be obtained directly from the value of the weighting function at the crack

tip.
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Fig.4 Discretization of the boundary for the present BFM analysis

NUMERICAL RESULTS

Temperature analysis

Thermal Stress Cleaving of a Thin Strip 2099

Fig.5 shows the difference between the temperature distribution in a semi—infinite strip
and in the same area of an infinite plate due to an isolated point heat source applied
at /W = 1.0,y/W = 0.0. In the beginning of heating (4xt/W? = 1.0), the temperature
distributions are almost the same between two cases. The contour appears as the concentric
circle with the origin at the heating point. As the heating time increases (Fig.5(b),(c)), the
difference between the two becomes large. Although the axisymmetric distribution holds
in an infinite plate independently from the heating time, this characteristic is no longer
conserved in a semi-infinite strip and remarkable temperature rise near the end (z/W = 0)

is observed.

50 -
prys
-~
=
& ol
&~
< _ 2}
B2
I~
L &7 1
10 £ 4
7
I;’,;';.’l_l 2
2777552
o " '/"

22>
7 %2 05 g

AN PALTAS
GAZSTLILFS
7y Y,
7L

2 2.

107244
244, &2, £ s sssss
o 2 1 2
0t 4

<7
ZX> %
20, 50y 2
’45\;;;,‘;;/"11 %2

777/ 74 %
T 7 A5G T7SH,
.‘*,,,;// 227057 77
<

Iig.5 Comparison of temperature distribution in the strip (left) and in an infinite plate
(right) at 4xt/W? = 1.0 (a), 10.0 (b) and 100.0 (c)
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Traction along the boundary

The traction distributions along the boundary to be superposed to the thermal stress
field due to the point heat source are shown in Fig.6, where the normal stresses for the
strip (solid line) is compared with one in an infinite plate (dot line) at the corresponding
position. The difference of traction is small in the beginning of heating (4xt/W? = 1.0),
but this difference becomes large as heating time increases. It is noticed that the normal
stress along the upper edge is tensile while the stress on the z axis is compressive with
the singularity at the heating point. From Fig.8, time dependent behavior of the thermal
SIF can be predicted at the tip of the edge crack in a strip. Moreover, once the resulting
SIF reaches fracture toughness of the material, the crack would propagate toward the heat
source until it reaches certain point leaving a small distance from the heat source.
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Fig.6 Traction along the boundaries and stress along the z axis

Thermal stress intensity factor

Fig.7 shows the time dependent behavior of the thermal stress intensity factor at the tip
of the edge crack. While the non—dimensional heating time 4xt/W? is grater than 0.5, the
most effective heating position is approximately D/W = 0.4. This is true even if the crack
length changes widely within a rangeof 0.5 < ¢/W < 10.0. It is also noticed that the crack
length dependency of the relation between SIF and 4xt/W? diminishes for ¢/W > 5.0.

COMPARISON WITH EXPERIMENT

In order to verify the present resulis, the cleaving experiment of Silicon strips using a
Nd:YAG laser as the heat source was carried out.

Table 1 shows the thermo—mechanical properties of the used material. The thickness of the
plate was 0.36[mm] and the width was 10.0[mm]. The diameter of the laser spot was set
to be 0.4 [mm], the heating time was fixed to be 0.3[s] and the minimum amount of laser
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output required for crack extension was measured by increasing the output step by step
up to 30[W]. The result of the cleaving test was arranged in Fig.8. The absorbed amount
of laser output for the crack extension, Q were plotted against heating location D/W with
error bars. The thick curve connects the mean values of the experimental data. It is seen
that the most effective heating location for the thermal stress cleaving was D/W ~ 0.4
in both cases for the crack length ratio ¢/W = 1.0 and 5.0, and this fact agrees with the
numerical results at 4xt/W? = 4.0 shown in Fig.7.
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Fig.7 Thermal stress intensity factor versus heating time

Table 1 Thermo-mechanical properties of Silicon at room temperature

k[m?/s] a[1/K] X [W/mK] E [GPa]
83 x 107% 2.62 x 107° 156 117
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Fig.8 Experimental result of Silicon plate cleaving
CONCLUSION

Calculation of SIF for the edge crack in a semi-infinite strip due to the thermal stress of
a point heat source was shown and the computer work was demonstrated under various
geometric and heating time conditicns. It was found that the most effective heating location
is the point ahead of the crack tip for approximately 0.4 times the half strip width regardless
of the crack length. In order to verify present analysis, cleaving test of Silicon strip using a
Nd:YAG laser was carried out and good agreement with the numerical results was found.
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