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ABSTRACT

A general 2-D solution has been obtained analytically for the crack with interacting rough faces.
The interaction has been modelled at a large scale as (1) Mohr-Coulomb friction and (2) the
crack opening being a known function of sliding. The detailed consideration of a crack with
saw-like faces has shown that the energy release rate is less than for a conventional shear crack.
Tensile stress concentration caused by the crack opening reduces the angle of kinking though
not sufficiently to make the crack propagate in its own plane. At a certain magnitude of shear
loading the opening reaches its maximum value determined by the height of asperities. Starting
from this point the zone where the maximum opening is reached rapidly increases and the
dependencies of crack face displacements and the area of crack opening on the load become
non-linear. This however does not affect values of the stress intensity factors.
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1. INTRODUCTION

Shear cracks are usually considered as smooth cuts which faces slide due to the action of shear
tractions. The real roughness of the crack faces is modelled by friction usually depending on the
normal compressive component of the external load (eg, Cherepanov, 1979). In this case there
is no normal opening of the crack. It is however known that roughness of the crack faces
contributes to frictional resistance (eg, Patton, 1966; Barton, 1973) and also causes crack
opening (dilation) due to interaction between the asperities of the opposite faces (eg, Barton, et
al., 1985; Barton, 1986; Cherepanov, 1987, see also Goodman, 1989). The simplest model
illustrating this influence is saw-like crack faces (eg, Goodman, 1989). The horizontal
displacement of the crack faces causes a corresponding vertical displacement (see also Bazant,
1980). If, in addition, there is normal stress applied to the faces then its action will manifest
itself as friction resisting the shearing with the resisting stress proportional to the magnitude of
the compression.

The interaction between the rough crack surfaces under shear changes the distribution of

compressive stresses acting on the crack plane and thus affects the sliding and eventually the
stress concentration at the crack tip. Tong et al. (1995) computed the stress intensity factors for
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an edge crack with the rough tip in which both compressive and shear stresses associated with
the face interaction are linear functions

In the present paper the 2-D problem for a crack with interacting rough faces is solved in closed

form for an arbitrary dependence between normal and shear displacement and a particular case
of saw-like crack is considered in detail.

2. CRACK WITH ROUGH FACES. GENERAL EQUATIONS

Consider a straight crack with rough faces in a plane. This crack will be treated at a scale level
at which particular elements of the roughness are not seen. It is assumed that there exists an
intermediate size / such that d<<H<<I, where d is the characteristic size of roughness, 2/ is the
crack length, Fig. 1. Then the overnill effect of the interaction between the faces can be

accounted for by introducing volume elements of the size H and considering the stress and
strains averaged over such volume elements.
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Fig. 1. Homogenisation of the crack face roughness.

When the large-scale stress and strain are introduced, interaction of the asperities will manifest

itself in (a) friction and (b) dilation ie the crack opening even if the crack itself is under
compressive load.

Let L be a contour of a crack of unit half-length, L={ z : -1<Rez<1, Imz=0 }. The friction will
be characterised by the Mohr-Coulomb criterion:

zel: Irxy(x)’+ay(x)tan¢(x)=c(x) o,(x)<0, m

where o, and 1,,, are normal and shear stresses, ¢(x) is friction angle, c(x) is cohesion.

Dilation is represented as a dependence, f, between the tangential and normal components of

relative displacements of the crack faces. This dependence is defined by the type of roughness
and the way they interact with each other.

If one uses [.] to denote the discontinuity (jump) of a field through the crack contour, the
boundary conditions for the elastic problem for the crack with interacting faces will include the
friction condition (1), the following conditions

zel: [oy(x)] = [t‘y(x)] =0, [u(x]] = f([V(x)D (2)
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and the conditions determining the behaviour of the stresses at infinity. In this problem the
normal and shear stresses are continuos functions,Awhlle the displacement components u, v
experience jumps interrelated through the given function f.

i iti k can be expressed
1 tentials for the additional stress field produced by such a crac
3;1};232}?&:)((331“10\;"1) distribution of the displacement discontinuity (eg, Savruk, 1981) under
plane-strain conditions as follows

1 +0®) 1 {o® = E0®) ] .
¢(z)=5;£—&_zd§, l}‘(z)_m)"[i_zdg o
—._g__._ v el ii_ (4)
0®©)= - Vz)(f (u@)-1) @)

Here z is a point in the plane, QO(&) is the unknown function; E, v are Young's modulus and
Poisson's ratio respectively.

Let us assume that the contact between the crack faces is always kept. The criterion of sliding
(1) can be now written as follows

|to(x) + A(x)|+ [co(x) + Acs(x)] tan ¢(x) = c(x) (5)

i d Ac are the additional shear
o and oo are the applied shear and normal stresses, At an ar 2
zxtlier?\o:mal stresses created by the displacement discontinuity (sliding and_openmg) btc;
compensate the excess of o over the frictional strength. This means that sg_n(A‘t)——'sgn(‘to), u
sgn(to+AT)=sgn(1), since the compensating stress cannot change the direction of sliding.

Now (5) can be rewritten by multiplying both parts with x=sgn(t,), which after simple algebra
gives:

At(x) + Ac(x) tan(x$(x)) = (C(x)‘ ‘to(x)l —0,(x)tan ¢(x))x ©®

Then equation (6) after substituting complex potentials (3) and using the Kolosov formulae (eg,
Muskhelishvili, 1953) leads to the following singular integral equation

l'j UL (ct)~[ro @) = 5o(x)tan 6 /A ¢
nd E-x
where p(&)=Re[(tan(x$(£))+)QO(E)] is a new unknown function.

i i i iti i displacement. In the
£ equation (7) has to satisfy the condition of uniqueness of displa
z:sz S»:/)llm‘?rlloq?(x(t))=$iconst (Ehi)s will be the only case considered further) this condition leads to

| (®)
[u@)de =0

-

The appropriate solution has the form (eg, Muskhelishvili, 1953)

____“l_z:(c(x)—lto(x)!—cn(x)tan ¢)dx )
i

0=
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3. EQUILIBRIUM OF A CRACK WITH SAW-LIKE FACES

Consider now a special case of a ciack with saw-like faces (eg., Patton, 1966; Cherepanov,
1987; Goodman, 1989), Fig. 2a. For the sake of simplicity all asperities will be assumed to
possess the same size, d, and the same angle of inclination, ¢. The friction between the contacts
will be characterised by a constant cohesion, ¢, while the genuine friction angle at the contacts
will be neglected in comparison with the inclination angle. The external load will be assumed
uniform with the shear and normal components Ty and o respectively. It will also be assumed
that when the crack opening reaches its maximum, v,y (Fig. 2b), the overall friction angle
remains the same, ¢, ie there is still a certain penetration of the saw-like faces into each other
sufficient to ensure the friction.

I '

[u] vmax
= | Yo Ty 0 xg 17
|
2
d

Fig. 2a. Saw-like crack faces. Fig. 2b. Maximum crack opening,

In this case

[u] tand if [u] <d

T, = [t~ ¢+, tan¢ = const, [v]:{dtand) if [u]>d

(10)

0= {5 +[oosbenp(xs) (< -2}

where H(x) is the step function, tx; are coordinates of the points where the vertical
displacement, v, first reaches its maximum, v,,, =dtan¢, Fig. 2b, ie the points with horizontal
displacement, [#]=d. In this considerition T, plays the role of the only loading parameter. It will
further be called the effective shear stress.

f/‘\ﬁer substituting (10) into (3) and finding the corresponding integrals, the potentials take the
orm

(D(z) =G, (z, xd) + (G, (z,l) - G,(z, xd])coscb exp(ixd))
¥(z)= -®(z)- G,(z,x,) - (Gz(z,l) = Gz(z, xd))cosct) exp(ixd)

where

an

G,(z,x) = arcsin x —

z [z -1 . i
N arcsm(\{ - ] G,(z,x) = 87(26'(2’x))

' —x
Now the stress intensity factors, K7, K]y can be obtained

——

Equilibrium of Dilating Shear Crack with Rough Faces 2255

K, =t Jrcospsing, K, =1,Jmcos’d (12)

4. CRITERIA OF CRACK GROWTH

Let us now consider classical criteria of crack growth. Two criteria will be discussed: the energy
criterion and the criterion of maximum tensile stresses.

4.1.  Energy criterion

The energy criterion has the form (eg, Rice, 1968)
oU =2y (13)

where v is the specific surface energy of fracture, 51/ is the energy release rate which for the
crack under consideration in plain strain is

=y v nt,’ cos” ¢ (14)

5

(Klz + Ku-) = -

oU =

When ¢=0 this expression is reduced to the conventional one for a shear crack. It should be
emphasised that for the crack with rough surfaces the energy release rate is /ess, by the factor of
cos2¢, than for the conventional shear crack. This is also seen from (12): the Mode Il stress
intensity factor is less than for the conventional crack by the same factor. Even the appearance
of K, in the expression for the energy release rate does not compensate for the reduction of Kj;.

Both these reductions should be attributed to the presence of the normal displacement. Indeed,
the crack opening displacement creates compressive stresses in the material at the place of the
crack (see Section 5). These additional compressive stresses increase friction and thus decrease
the effective stress shearing the crack. It can therefore be concluded that the crack dilation
increases the stress required to initiate the crack growth.

4.2.  Criterion of maximum singular tensile stresses

It is known that shear cracks usually do not grow in their own plane but rather kink. In order to
determine the influence of the dilation of the direction of kinking the criterion of maximum
singular tensile stresses (eg, Cherepanov, 1979) will be used.

According to Cherepanov (1979) the angle of kinking, 6, is

1-+lesn M} K %

6 = 2arctan
4

1

After substituting (12) into (15) one has A=cot¢. Figure 3 shows the resulting dependence. As
expected, the dilation reduces the kinking angle, although this mechanism is not sufficient to
make the crack grow in its own plane.
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Fig. 3. The angle of crack kinking, 6, vs. the dilation angle.

5. DISPLACEMENTS OF CRACKS FACES

By integrating Q in (10) on i
e has the following e i i i
crack faces and the coordinate of the zone of magxin:(f:f)s;l)zgisn;o;;?s?évaelsglglgac;g;ems of the

4(1-V?
T"(—E—)“‘ C-dtatg i e,

o)
41-v?
te—(ﬁE—)\ll—xl cos’d if x, <|x|<1
dtand if =
[ve)]=5  4(1-v?) e
1:,—E—\/1—x2 cospsind if x, <[x|<1

Ed 17)

}lgule 4 ShOWS the d P = gtn, jo 2 zZone O (S
ependence Of the half length, x of the maximum openin (o] n th
>
dlllleHSIOllleSS loadlllg par ameter ¢ which is the normalised effective stress

When <1, ie 1,<1/4Ed(1-v2)-1
,ieTe (1-v2)-lcos 2, (note, th k i
e s, , the crack half length is 1, so d<< istributi
of the hox elzfg())r:t?}llecgg};:g:::; ;f dlsplfceme}r‘\tl discontinuity is the same as for CL)ntlile?lgz)sr:glb:l?e(;n
2 ing factor, while the vertical is di i )
gk save tical component is directl
tal one. After 7 reaches | the zone of maximum opening appears insyt;)nrt(;‘r)lzgtlg{?l X:

this point the rate of its ion is infini
A propagation is infinite. Then th i
eventually covering the whole crackas 7 approaches inﬁnit; i AT w2, rfipecd mie

This in i
o defgtramn;a:?;sueli appea{]ance of the zone of maximum opening has however no implicati
e rolaae ratee(rlgzj - assocbxgted with the crack. Indeed, by transferring the ex;‘))rlecsastilc?ri1 f? n
relez an arbitnry crack length, /, i i °l
e gth, /, integrating the r
aking into account that a crack of zero length does notgcontrﬁ)ute t:StEIef gr:/;'rgil ﬁ")or:}? O
, one has

Vi,
nt, cos” ¢
(18)

/=
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It is seen now that the energy smoothly depends on the applied load and does not depend on the
length of the zone of maximum opening.

As the crack opens it affects overall dilatancy and permeability of the cracked material (see also
Barton, et al,, 1985). The contribution of the crack into both dilatancy and permeability is
proportional to the total area of the gaps between the asperities which in its own turn is
proportional to the area of crack opening. From (16), (17) one has

T dtand ifr<l
(19)

S = [ 0ok = 2
1“1 " dtan¢[tarcsin(t")+\/l—t"Z] ift>1

where  is the normalised effective shear stress 17).

The area of the crack opening reaches its maximum, S,q,=2dtan¢, when (—0. The relative area
of crack opening, S()/Syax is plotted on Fig. 5. As expected, it first linearly increases with 7 and

then, after =1, sharply slows its growth.
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Fig. 5. Relative area of the crack opening vs.

Fig. 4. The coordinate of the zone of maximum
the normalised effective shear stress.

opening vs. the normalised effective stress, 1.

zone however affects the distribution of compressive stresses acting on the

The length of this
d, it is followed from (11) that

crack plane due to the interaction between the rough faces. Indee

T, . x xA1-x* +xy1-x
Ac(x) = ——%sin 24| arccos(x, )+ —In—* d (20)
T {xa) N \F_ xdz‘

bution for different values of x;. It is seen that the stress distribution is
(1995). Moreover, it has

Figure 6 shows this distri
highly non-linear, opposite to what was assumed by Tong et al.
logarithmic singularities at the ends of the zone of maximum opening.

6. CONCLUSION

A general 2-D solution is obtained for the crack with interacting rough faces. The interaction is
modelled at a large scale as (1) Mohr-Coulomb friction and (2) the crack opening being a
known function of sliding. A particular case of a crack with saw-like faces is considered in
detail. The energy release rate for such a crack is less than for a conventional shear crack even
despite the presence of the Mode 1 stress intensity factor. However the tensile stress
concentration does reduce the angle of kinking (calculated from the criterion of maximum
tensile stresses) though not sufficiently to make the crack propagate in its own plane.
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At a certain magnitude of shear loading the opening reaches its maximum value determined by
the hight of asperities. Starting from this point the zone where the maximum opening is reached
rapidly enlarges and the dependencies of crack face displacements and the area of crack opening
on the load become non-linear. This however does not affect the stress intensity factors and thus
the conditions of crack propagation.
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Fig. 5. Distribution of additional normal stress due to the crack opening; Ac(D=-1,/2sin2¢ is the
stress distribution for x,=0.
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