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ABSTRACT

Complex potential functions for finite elastostatic deformation gradients are shown to provide
a solution to the problem of fully non-linear equilibrium in compressible elastic solids. The
strain-energy density function is considered in Knowles and Sternberg form. The foregoing
complex functions enable the traction-free crack problem to be solved as a non-linear
cigenvalue problem. Finally, the determination of field stresses in finite-sized, homogeneous,
and interfacial crack geometries is considered briefly.
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INTRODUCTION

Linear Elastic Fracture Mechanics (LEFM) and Elasto-Plastic Fracture Mechanics (EPFM)
have played a prominent role in the analysis of cracks in recent years. The former relies on
the linearised theory of elasticity that gives rise to the well-known ‘singular’ field at the crack
tip. In EPFM a deformation theory of plasticity can be applied to the problem of a crack
undergoing ‘small-scale yielding’ as shown by Hutchinson (1968) and Rice and Rosengren
(1968). Both approaches assume a mechanical response with infinitesimal deformations.
Since locally unbounded strains and stresses exist at the crack tip in LEFM problems this is a
direct contradiction of the underlying principle behind their derivation.

Despite the doubt that surrounds the derivation of the crack-tip field behaviour LEFM has
proved to be a successful ‘engineering’ tool for the solution of many fracture problems.
However, a similar treatment applied to the problem of the interface crack between dissimilar
slabs of material, first performed by Williams (1959), leads to unsatisfactory field behaviour
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consisting of an oscillatory singularity. Herrmann (1989) has shown that if the linear stress-
strain law is relinquished in favour of the fully non-linear theory of elasticity, permitting finite
deformations, an asymptotic solution to the interfacial crack exists that is free of the
oscillatory singularity. The analysis assumes each slab of material is hyperelastic, isotropic
and homogeneous satisfying certain asymptotic conditions on its strain-energy density
developed by Knowles and Sternberg (1973 & 1983) who had previously considered the plane
strain homogeneous crack in an infinite plate. The problem of Neo-Hookean materials has
also been considered by many authors such as Ravichandran and Knauss (1989).

The determination of the full-field sclution to the non-linear hyperelastic crack problem is of
formidable mathematical complexity. The analyses of Knowles and Sternberg (1973), and
Herrmann (1989) consider the asymptotic behaviour at the crack tip only. In this paper a
solution to the full-field problem is presented to enable the stress state for finite-sized crack
geometries to be obtained. Also, this analysis should permit experimental techniques such as
photoelasticity (see Nurse and Patterson, 1993) to be used with more confidence in the
determination of the asymptotic field behaviour at crack tips.

FINITE ELASTOSTATIC DEFORMATION THEORY

Consider a prismatic body with the middle cross-section occupied by the domain Q of co-
ordinates (x,,x,). A plane deformation of the body, which maps € onto a domain Q* of the
same plane, is given by:

Yo = Yol X) = %, + (%, %,), on Q. (1)
where u, are the components of the displacement vector u!.

The deformation-gradient tensor associated with (1) is given by F, i.e.:

_By,,_[F.. E;}_[Hau./ax, du, / dx, }

= = 2
ox, | B du, /ox,  1+0u,/0ox, @

ap
where F,, are deformation gradients of an elementary slab of material (Fig.1). Let / and J

denote the fundamental scalar invariants of the deformation gradients given in terms of the
symmetric positive definite tensor G = F "F by:

I=trG =N )}, J=+detG =AA,, on Q. (3)

where A, >0 is the value of the Iocal principal extension ratio. The deformation of a
homogeneous and isotropic hyperelastic solid is treatable in terms of the stored strain-energy
per unit of undeformed volume, or W, as a function of the material co-ordinates in Q. The
function W depends on the invariants/ and J via:

W(x,, xz') = G)(I(xI ,x, ) I (x),x, )), for all (x,,x,) in Q. 4)

ILetters in boldface designate first or seconc-order tensors, as well as the matrix of their scalar components.
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Knowles and Sternberg (1973), showed that W has a suitable asymptotic representation given
by:

o(1,J)=[AI +BI +ClI? + A+ C+ D] +O(R™"), where R= IP+J? (5)

(1954), and of Coleman and Noll
dent and must satisfy A>0, O<B<;A,
arameter D ensures that the strain-

which satisfies the inequalities of Baker and Ericksen
(1959). The parameters A,B,C and n are material depen
>0, and 1/2<n<eo (Knowles and Sternberg, 1973). The p
energy density vanishes in the undeformed state.

Let G denote the ‘pseudo’ two-dimensional Piola stress tensor defined on Q. The stress-

deformation relationships are given by:

28@[E| Fﬁ}_{_é@_[Fn —an} on Q. (6)

O = |Fy Fol oI|-F. F

The ‘actual’ or Cauchy stress defined on Q is denoted by T and given by:

o —r L200[RF +FaF, E.Fz.mzaz}a_e% o . @
=BT oI | FFy + FoFyy FpF+ FuFal 9J
where SuB is the Kroneker delta.
k(——)' Ay*du/dy =
Ay*svisy [ =

Ax*dv/8x
|
N

Ax \ L Ax*Bu/dx

Figure 1: Two-dimensional frame element originally consisting of two mutually
perpendicular members of unit length Ax and Ay.
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DETERMINATION OF FULL-FIELD SOLUTIONS

Equilibrium
The equations of equilibrium are?:

Oy =0, On Q (8)

For the sake of brevity in the proceeding theory consideration will be made to the case of n=1
which represents material with a small degree of hardening. The equilibrium equations in

terms of (2), (5) and (6) become:
aJ ou, ou ou 8 u,
=-4CJ 1+— L ||+207 AJ2 c ! +
Oipp C [axl( axlj ox, [axzjil * ox} ax )

2
2
aJ Bu2 a] aI au-2
6CI 1+ -2CJ
|:3.1cI ( axz ax2 ax, [ax, ox, ) ox, ( j:l

=0

aJ du, 5 d%u, azuz
e 27[Ar +C .
s = Cj[ax, (ax, ) ox, ( )] M M ( ox? ax; *

oJ [ ou 8] au al du, al ou
6CI ! —||-2C. Ll —| 1+ —
[ax, ( ox, ) 8x2 axI \:ax, ox, } ox, ( ox, ]]

=0

()]

on Q. With a view to solving for these non-linear differential equations in u, expression (9)
can be made linear in 7 and J by adopting the harmonic equations:

Fu, 1 ax} + w135, =0, 'w, /3x’ +3u, / ox,’ =0 (10)

Separating terms in / and J and substituting for expression (10) in (9), (to eliminate for u, 5, ),

enables the equilibrium equations to written in the following matrix form:
DH=0 (11)

where D and H are 4 x 4 and 4 x 1 mairices respectively, and are given by:

2The summation convention for subscripts is row employed with the comma between subscripts denoting partial
differentiation with respect to that variable after the comma.
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2 2
p,=31+242) _{%%
ox, ox,
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ox, ax2 ax1 ox,
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ox, \ ox,
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u | 9uy —4 1+?_’fl_ 9uy
X, ox, \ ox,
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i ( " ax,j ( " asz +2[8x2) +2[8x,)
Ju
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D, _3(314,) 41+ au,)
o ox,
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1 1 !
o { * )( +9x1) {ax,Iaxzj
ou, | du
D = 1 —1 1
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( * ox, )(axz] ( axz)[ axl) -
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ax, ox, axz 8214‘2
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R E L
a 2
o, o | 9x,0x, |

A solution to the equilibrium equations exists if the determinant |D| is equal to zero. A non-

linear expression in terms of the deformation gradients is yielded which applies a further
restriction on the field distribution of stress.
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Complex Potential Functions

Due to expression (10) the displacements i, (x,,x,) can now be expressed as functions of the
complex variable z= x, +ix, and will have conjugate pairs given by the Cauchy-Riemann
relationships. The in-plane extension ratios A,z can also be expressed in terms of complex
functions (Nurse, 1995). Let:

A(z)=(1+0u(2)/ ox,) - i(du(2) / ax,)

12
A(2)=(1+0uw()/ ox,)+i(0m,(2) / ax,) i)

then:

Fi Fl Re(A,) —-Sm(A,) N 5 g T

SOLUTION TO THE TRACTION-FREE CRACK PROBLEM

Anticipating a neo-singularity at z=0 the crack faces are prescribed to be traction-free on the
real axis to the left of the origin, i.e.:

Cgr(%,.0 +)= Goo(%,,0 -)=0, x,<0 (14)
The complex functions A,(z) and Az(z) are assumed to admit the following expressions:
(& G
A== M@= (15)
Z Z
where C and C, are generally complex. The field solution is obtained by the non-linear

eigenvalue problem of the form:

2(AT3 + CI)Re(A,)+ (B - 2CT)Re(A,)=0

16
2(AT + CI)3m(A,)+(BJ* = 2CT)3m(A,) =0, 2= ret (16)

where the invariants I and J must be expressed in terms of A,(z) and A,(z) using expression

(13).
DISCUSSION

General

Consideration is now drawn to the problem of determining the field stresses for finite-sized
crack geometries with known boundary conditions. Knowles and Sternberg (1973) sought an
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asymptotic representation of the near-tip field stresses using the solution to the linearised
problem of the crack in an infinite plate of Inglis (1913).

The deformation is assumed to be small in the far-field region, ie. |xl >> 0, and, therefore, the
stress-deformation relationship behaves linearly:

v 1
Ga.l} = Tu.[i = 2[1[—:5;6“‘514')& + E(uu'ﬂ + uﬂ,u)} (17)

where | is the elastic shear modulus and v is Poisson’s ratio. Using expression (12) the
Jtresses can be written in the following complex form:

0, — O, +2i0, =2(A, - A))
LY (18)

G, + 6, =20 1_21)(<)ie(A2 +A,)-2)

In the manner used by Knowles and Sternberg for the infinite plate the finite geometry
problem may be linearised in terms of the boundary stresses. Any loading at the boundary of
the crack problem is permitted in the infinitesimal strain range. Expression (18) can be used
10 solve for the boundary-value problem using methods similar to those described by
Muskhelishvili (1953).

The Interfacial Crack

It is now assumed that each material half is represented by a pair of complex functions, i.e.
AY(z) and A} (z) for the upper half, and A(z) and Al(z) for the lower half. Herrmann (1989)
adopted the same approach as Knowles and Sternberg (1973) in the determination of the
<olution for the interfacial crack with loading applied at infinity.

To preserve the continuity of the deformation and stresses across the interface there exists
bond conditions (Herrmann, 1989):

Ya(x,,0 +)= yo (%0 =), Gpa(x,0 +)= G(x,0-), x>0 19)

Another eigenvalue problem results from expression (19) that must be solved in conjunction
with (16) for a traction-free crack. The aforementioned approach to the solution of finite
peometries is also applicable. However, in finite geometries for interface problems it must be
noted that two ends of the interface may exist where boundary conditions are prescribed. For
an accurate solution to the field stresses consideration may have to be paid to the existence of
a pair of ‘coupled’ neo-singularities at the ends of the interface.

CONCLUSIONS

Formulation of the non-linear elastostatic problem for a traction-free crack is presented in
terms of complex potential functions for the deformation gradients. The determination of full-
field solution to finite-sized geometries is possible by expressing the boundary values in terms
of linearised stresses.
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