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ABSTRACT

This paper provides stable and comparable solutions in general for two-dimensional geome-
trically linear statements of solid mechanics (isotropic elasticity, isotropic deformation
theory, flow theory with isotropic hardening) at interface corners using eigenfunction ex-
pansions. The basic idea of the singular and non-singular stress and deformation field
calculation is characterized by introducing stiffness actions which operate as the corner
neighbourhood on the surrounding body and can be assembled in a common way to the
global stiffness matrix of the body. An interesting fact is that these stiffness actions do not
depend on the distance from the singularity point. All computations are made on modern
parallel computers. Using Domain Decomposition as parallel computing concept an effec-
tive parallel preconditioned conjugate gradient method for high order degree of freedom
finite element systems is utilized. In this connection the asymptotic stiffnesses mentioned
above fit well for the applied parallel solution technique and lead to an improvement of
the stiffness matrix condition. Concrete examples show the advantages of the presented
approach. Deformation fracture criterions characterizing different local stress conditions
at interface corner and crack configurations are introduced and discussed.
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INTRODUCTION

Fracture applications for material compounds in micro-electronical and other structural
members of high technologies require stable comparable solutions of correctly formulated
boundary value problems in linear and non-linear solid mechanics on one side and corre-
sponding experimental research for identification of material behaviour and determination
of the critical parameters resulting from the solid models on the other.

It is very complicated to get these solutions in critical points of the solid because of the
singular oscillation effects which may appear at interface corners and cracks. Introdu-
cing modified geometrical models of very small smooth circles instead of sharp corners to
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get simple solid statements is not always succesful. It must be pointed out that singu-
lar solutions for solids with partly homogeneous material behaviour cannot be excluded
in principle for all cases. For instance a circle smoothed interface crack has the singular
behaviour of a 90°-90° material compound. On the other hand for very small circles it
is necessary to include models of microscale levels which require extended experimental
investigations and coupling theories to solid mechanics. In this connection the expense
can only grow. As a first approximation the solid models with corresponding macroscopic
experiments are responsible for fracture behaviour.

This paper provides the mentioned stable comparable solutions in general for two-dimensio-
nal geometrically linear statements of solid mechanics (isotropic elasticity, isotropic defor-
mation theory, flow theory with isotropic hardening) at interface corners by eigenfunction
expansions which are coupled to the usual finite element approach of the solid surrounding
the corner. The applied technique allows extensions from incrementally proportional load
paths to non-proportional local load increments simplifying the mathematical calculations
for the presentation of stress and strain fields in this general case.

REPLACEMENT OF ASYMPTOTIC SOLUTION BY STIFFNESS ACTIONS

Let us consider two-dimensional statements in the neighbourhood of an interface corner
consisting of two material ranges (0 <6 < 6, and 0 > 6§ > —0,). At a distance of £ = &
from the corner the finite element nodes of a regular net are established in a polar co-
ordinate system of { and 6 together with the displacement degrees of freedom ui(éo,0;)
(see Fig. 1). For formulations of geometrically linear and physically non-linear isotropic

Fig. 1. Neighbourhood of an interface
corner together with the finite
element nodes

statements the following boundary conditions are given:

- Vanishing normal and tangent stresses (ogq, 0¢g) at 0 = 6o, —0,

- Continuity of normal and tangent stresses and displacements (u¢,ug) at 6 = 0.

The main idea of the singular and non-singular stress and deformation field calculation at
interface corners presented here characterizes a replacement of the corner neighbourhood
(€ < &) effect to the surrounding body (€ > &) by introducing stiffness actions at £ = &
which can be assembled in a conventional way together with the other element stiffness
matrices to the global stiffness matrix of the body. For ¢ < & the following relations are
valid:

o= CAED), o= {ow, o) w=3 Cf(E0), u={ugu). (1)

In (1) £7(6,0) = {£(€,0), 5 (€, 0)) and £(6,0) = {£{7(€,0), [(€,0)} denote the
corresponding vectors of stress and displacement eigenfunctions whose concrete forms are
given by Scherzer and Meyer (1996). In the case of flow theory applications in (1) the
corresponding eigenfunctions for the increments of stresses and displacements have to be
used in the way shown by Scherzer (1994) and Scherzer and Meyer (1996). Because of the
boundary conditions at the circle £ = {; it is not necessary to include the stress component
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o0 in o. The constants C; can be related to uk(€o, 6;) (k=¢,0) by

u : 2
o, 0) = S Cif (6, 05), (k=667 =123,.) (2)

and solving (2) one gets
L= Zbia‘(foﬁh )v;(éo), v1(&o) = “5(50791)71’2(50) = ug(éo, 01),

a(60) = ue(o, 02), va(€o) = ua(€os 02),vs(&o) = ug (€0, 03), oy 01 = —0u,...0n = bo. (3)

l'o obtain stiffness actions it is necessary to calculate the virtual work §A of stresses on

the circle € = &o:

0o A
CA = & / cebudd =63 / £ (60, 0) » £ (&0, 0) dOC:6C;

—bu v g,

0o
04 =Y |60 X bibit [ £7(60,0) o £ (60, 0) 40| vi(E0)6vi(So)- (4)

k1 >y

I'he symbol ”e” marks scalar products of corresponding vectors: Thﬁ kl (k-th column,
/-th row) element of the wanted stiffness action matrix is' determu‘led o (4) as the fa(;:tor
of vi(€o)8ui(&) (bracket). Computations of stiffness actions .by (2), (3) and (4) .lea t.o
an introduction of n eigenfunctions if n degrees of freedom exxsvt at { = {. Avoiding this
non-effective procedure it is possible to orthogonalize the eigenfunctions.

ORTHOGONALIZATION OF EIGENFUNCTIONS

<7~ uV—J (o)
l.et us introduce a new system of functions f,-( )(5,0) and fl-( )(.5,0) from f;7’(£,0) and

{'")(¢,0) which satisfies the conditions

Lo

L 8o _
[¢ / £)(¢,0) o £1)(¢,0) d0 | dé = €36, (8:; — Kronecker’s symbol).

0 o

Using Schmidt’s orthogoﬁalization method which is for instance presented by.G. Korn and
I'. Korn (1968) in connection with the condition above the representations of displacements,
.tresses and §A, according to Scherzer and Meyer (1996), follow in the form:

_ — - on
u(to 0) = X Cileal/&ot(0), 7(60,0) =3 Cileo) 2,

0o e

bA= Y | babn [ 1(0) 0 157(0) 0] vil6o)Sulso).

kL | b,

Note that the new variables C; depend on & (Ci = Ci(&)) while C; are constants. On
{he other hand it is interesting to remark the £,— dependence of w and o and the &—
independence of bix which was shown by Scherzer and Meyer (.1996). Tha't means the
stiffness actions do not depend on the distance from the singularity. These circumstances
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remain the same even if the roots \; of the solvability condition are complex. To see this one
has to combine the corresponding complex and conjugate complex roots and eigenvectors.
For effective computations of finite element stiffness matrices additional orthogonalization

of function systems f")(4) and £)(6) leads to E(;T(G) and f,-(“)(O) by

o o
/ £(6) o £(6) d6 = 6. (5)

—bu

As conclusion of (5) the displacements, stresses and §A result in

u(E, Oe=ts = Voo S CH(0), (6, Oees = Jz T (0), (6)

§A = &Y CiC;
0 0 _
= foz;_a/u (t7) .4\67?22) do—/“ () '%}Eﬂ) o, %
0
G:_o/u £(0) » 25p2ap. )

Relation (7) allows an excellent determination of the wanted stiffness actions in §A after a
possible choise of #— finite element approximation for u (&, 0) :

u(éo,0) = Xk: Ni(0)vi(bo)

with N(8) as one-dimensional vector shape functions at the circle { = & which are given
for instance by Zienkiewicz (1984). Then §A and C; get the representations:

sa=y[x [ (190 «Nuo) a0

i O
T (0 N ao] wiensote) )
6o o
Cle) =% Tfi7(0) « Ni(0)dh vi(éo). (10)

>

Thus the wanted stiffness actions gi can be calculated by:
o 0
w=3 [ (f}")(a) . Nk(9)> a | (f,.“”(a) . N,(0)> do. (11)
T by —0u

Of course the invariant stiffness independence on & mentioned above is still valid. This
circumstance is very important in applications where invariant fracture parameters have
to be introduced.

The calculation of the constants C; from C; = C;({o) is possible by the help of (8) and
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u(,8) = 5, C;£™ (€, 8). For the roots Ay = a1, A2 = az, s = aa+2f3, (1= V=1), As =

as — Bat, ..., a1 < @y < az... the following system of equations is valid:

1 P! "
T = E7IKLC 467 T KGCo + 67T 2 (K1aCs + K1aCa) + oo

1 wasd
T = 02 K0y + &0 2 (KasCa + KuCa) + ...

1
= asz+3
0

Cs = 6 (1‘,3303 + 1{3404) + ...

013+l
G, = VI W Cot .
= : (12)

In (12) the quantities Ki; = Kij(gu) in general depend on the integrals gi over the scalar
product of the functions g,(f)(ﬂ) and g,(")(ﬂ) which are the #-dependent parts of the eigen-
functions £ (£,0) and £{”)(¢,6) by:

o
au= [ &0 g (0)ds.
=0y

The fact that Kz; = Ks3 = K3, = K41 = ... = 0 is a consequence of the orthogonalized
cigenfunction system construction. If u(&o, ¢) is known from the global solution of the solid
C, can be determind by (8) or (10) and C; follow from (12).

After introducing

. K;iCi
D; = KiCi, dji = =5~
the displacements and stresses get the representations at £ = £o

u(o,0) = £ Y Di€8” (1 + digna €S~ + L) (0), (13)

o (60,8) = 2 Dy (1 + i€ ™) + )E(0). (14)

It is remarkable that in (13) and (14) the form of the concrete roots A; (real or conjugate
complex) is not significant. These invariant £o—relations can be used in fracture applica-
tions characterizing stress conditions and critical states.

EXAMPLE OF AN INTERFACE CRACK

The theoretical results described above were implemented in a computer program on heavy
parallel computers. Using the Domain Decomposition (DD) as parallelizing concept the
effective parallel preconditioned conjugate gradient method developed by Meyer (1990)
for high order degree of freedom finite element systems is applied. In this connection the
asymptotic stiffness actions determined above fit well in the parallel solution technique and
lead to an improvement of the condition for the main stiffness matrices. This fact is very
important for elastic-plastic statements where the linearized equations are to be solved
repeatedly because the computing time can be reduced.

Results of test calculations will be explained. An interface crack specimen (750%1500 di-
mensionless extension, crack in the middle of the specimen with a length of 375) is strained
homogenously at the elastic softer specimen end and clamped right opposite at the elastic
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harder specimen end.
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I-Rissa - Level 3 - 32 proc. Sig-22 |-Rissb - Level 3 - 32 proc. Sig-22

Fig. 2. & = 0.75 Fig. 3. & = 0.075

400E-02

|-Rissc - Level 3 - 32 proc. Sig-22 I-Rissd - Level 3 - 32 proc. Sig-22

Fig. 4. £ = 0.0075 Fig. 5. & = 0.00075

For pure elastic calculations the folloving material parameters were used:

[n =0.0505, k° =4.5, & =3.25

7 is the ratio of the applied shear moduli (x), k° and &* are the ratios of bulk and shear
modulus multiplied by 3/2 of the elastic softer and elastic harder specimen half. Then the
roots of the solvability condition get the values:

[)\,- = —0.5£:0.06591194, 0.0, 0.5 420.06591194, 1, 1.5 £20.06591194, 2, ...

The Figs. 2 to 5 show the stress fields o,, (the y—axis is perpendicular to crack and
interface) related to p of the elastic softer material for different ¢y and equal zoom radii
€. = 1.0. The crack tip lies in the centre of the Figs. and the interface on the horizontal
straight line (2-axis) on the right side as prolongation of the crack. For all further Figs.
the same conventions are used. The zipper like domains on both crack flanks result from
postprocessing approximation errors. It should be mentioned that stresses are calculated
first in Gauss points (best approximation) and then extrapolated to node points.
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If in Figs. 3 to 5 one changes &, from 1.0 to 0.1, 0.01 a{ld 0.00.1, respectively, f.0r a corre-
;ponding stress scale in all of these 3 cases the same Fig. 2 will be prqduced illustrating
{le stiffness independence on & shown above. On the other hand the Figs. 2 to 5 express
convergent stress fields at interface crack tip. .

l'urther the pressure stresses (oy, < 0) under the crack tip are remarkable. They- result
{rom the different Poisson effect in both material domains. Both the soft material aqd
the hard one are exposed to tension in y—direction which causes different cont.ractions in
.+ _direction. At the interface crack tip the hard material impedes the contractions of-the
soft one and gets the pressure stresses as a reaction to th.is ir_npedirnent. .For.compans-on
I'ig. 6 shows the o,,—field from the solution without considering the special exge.nfunctlon
solution representations (£; = 1.0). It can be seen that pressure stresses appear 1n a small
region under the crack flank only. ' . ‘
I'o bear out that usual finite element methods without special asymptotics cannot give
orrect solutions at interface cracks geometrically the same interface crack specimen with
Jlmost identical material behaviour of the soft and hard regions is considered. The mate-

rial parameters are chosen as

n=0.7194, k° =45, K" = 3.23]

which get the roots A;:

[X; = —0.5 & 10001687346, 0.0, 0.5 +:0.001687346, 1, 1.5 +:0.001687346, 2, ...

I'he load is defined as symmetrical y—displacement at the SpeCil.nen poun.daries. Thej
comparable o, —stress fields with and without asymptotics are given in Figs. 7 anc.l 8
(&, = 1.0, & = 0.75). The pure finite element calculations represent the known solution
of a mode-1 "homogenous” crack. The Poisson effect consgquences do not appear. In
ihe Fig. 8 "with asymptotics” they can be seen in the region £ <04, In .F1g. 9 the
0,,—stresses “with asymptotics” of the same specimen are shown but Lh.e Poisson effect
consequences are deleted by special displacement defintion a.t the lower 1‘1ght edge of th.e
specimen boundary in the hard material region. The deﬁntlohn of these dlsp.lacements is
demonstrated by arrows in Fig. 10. They cause negative z—displacements (hrectly above
the interface and crack tip, push back the 2—contractions in the soft material region and
re able to balance the z— displacements below and above the interface crack tip this way.
I'us the Poisson effect consequences vanish and Fig. 9 shows the solution of a mode-I
“homogenous” crack. _ .

We have seen that the asymptotic solution technique presented here is able to give correct
.tress fields for interface cracks under tension with and without Poisson effect consequences
by the help of the same eigenfunctions. The pure finite element approac_h is too coars:e'to
feel the described effects. Also mesh refinement cannot save the situation of usual finite
~lements at interface cracks because they produce wrong asymptotic behaviour at the tip.
lu connection with the chosen material parameters this behaviour affects the surrounding
hody more or less. ) A
I'his fact can also be deduced from the comparison of the stress fields oz, and o, with
and without special asymptotics in the solution technique. The corresponding result§ are
shown in Figs. 11 to 14 (§ = 0.0075, {: = 1.0). The material parameters are chosen from
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§ 1 00E-02 -1 00€-02
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Fig. 7. oy, for the almost "homoge-
nous” crack without asymptotics

Fig. 6. oy, for the interface crack
without asymptotics
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Fig. 9. oy, for the almost "homoge-
nous” crack with asymptotics after
deleting Poisson effect consequences

Fig. 8. a,, for the almost "homoge-
nous” crack with asymptotics

. . Yo ~]-
Fig. 10. "Kinemat- Crack
ical” remove of the ~—
L.
Poisson effect conse- |
'Interface

quences | . |
|

the first "real” interface crack specimen. It is interesting to note the position of the y—axis
in these stress fields below the x—axis of Fig. 11 and Fig. 13. For oz the y—axis is a
zero line. On the other hand o, has ? symmetrical zero lines starting from the crack tip.
These effects of symmetry (o,,) and entisymmetry (04y) do not appear in the pure finite
element calculations which can bee seen in Fig. 12 and Fig. 14.

It is clear that the circumstances desciibed above have corresponding consequences for the
deformation field around the interfacecrack tip allowing non-linear constitutive behaviour
on the basis of flow theory. Let us corsider the specimen above in the plastic deformation
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2.00E-02

2 00602
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Fig. 11. o, with asymptotics Fig. 12. 0, without asymptotics

& 2 00602

I-Rissc - Level 3 - 32 proc. Sig-12 I-Rissco - Level 3 - 32 proc. Sig-12

Ilig. 13. g4, with asymptotics Fig. 14. o, without asymptotics
range. The elastic material parameters coincide with those of the "real” interface crack
pecimen. The plastic hardening is characterized by the yield function f in the form

%—Tt“—b"x"" : 0<0

?—Tf—b"x”c : 0>0 =0

e =
with x = [ /2%, de?Vde?) as the Odkvi . €®, 5, 7 and 77 i

ith x = [ /3 X, dejj 'deij as the vist parameter. ¢, 7, 7, and 77 denote plastic
train tensor components, the octahedron stress 7 (r= %5’1].5}], S;;— components of the
iress deviator) related to u of the elastic softer material and corresponding yield stresses,
respectively.  For the material parameters:

[r =77 = 0245, b* = 1.798, ° = 0.01666, p* = 0.25, p° = 0.4

the following roots A; can be deduced:

n = 0.01, &° = 225, x* = 32.5]

{/\,- = —0.5 £ 0.00193809, 0.0, 0.5 +:0.00193809, 1, 1.5 4:0.00193809, 2,
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In Fig. 15 and Fig. 16 the plastic zones at the interface crack tip of the specimen
described above are presented with and without asymptotics for comparable load levels
(& = 0.075, ¢ =0.1).

IRissbp - Level 3 - 32 proc. |Risbpo - Level 3- 32 proc.

Fig. 16. Plastic zone without asymp-

Fig. 15. Plastic zone with asymptotics >
totics

It can be seen that plastic deformations occur dominantly in the elastic harder material
because the stress level is higher there. This fact cannot be found in the solution without
asymptotics.

CHARACTERIZATION OF DEFORMATION AND STRESS STATES

As it is known the application of solid mechanics in modern microelectronic components
leads to the task of calculation of very complicated stress and deformation fields depending
on geometry, material laws, boundary conditions, loads and so on. On the other hand it
must be pointed out that the calculation of stresses, strains, displacements etc. only does
not give the answer to the main question:

Does the structure fail or not?
To estimate fracture three points are necessary:

1. Getting exact solutions for the mathematically formulated boundary value problems.

9. These solutions must be comparable to other solutions of corresponding statements
representing modified boundary conditions, material behaviour, load trajectories etc.

3. Experimental research for identification of material behaviour and determination of
the critical parameters of the solid models.

The second point results from the fact that fracture occurs in strong connection to local
stress and deformation states. In other words it is necessary to characterize the possible
local stress and deformation states for different fracture situations. When applying non-
linear deformation models this fact is very important. For example using the flow theory
where material behaviour depends on local load trajectories the stress conditions change
during the loading process and canresult in different possible local stress states of fracture.
To describe these circumstances let us introduce main stresses. The main stresses g, 02
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and o3 related to von Mieses stress (o, = 73-57') can be expressed by the constraint factor
(h = ﬂ("“z" +"”), Ozz,0yy and o, are the normal stress components in a zyz—co-
=

v Rt . V2Si;SikSk; \.
ordinate system) and the similarity angle of stress deviator (w= % arccos ——éjLJ')

0y = h+2%cos(w)
oy = h+2cos(w—%)
o3 = h+2cos(w—F). (15)

Note that these representations are independent of concrete material laws. Main stresses
are the roots of the corresponding eigenvalue equation of stress tensor. For two-dimensional
plane strain conditions the constraint factor and the similarity angle are interdependent.
Thus it can be shown that in this case the deformation components €zz, €yy and ey (€22 = 0)
for isotropic deformation theory materials have the the following representations:

g = ﬂéﬂ[sin(QOt —w+ %) +cos(2atw+t I+ 2v/3sin(w + %))
= ﬁcls(ﬂ[sin(Qa —w+ %)+ cos(2a+w+ 2)— 2v/3sin(w + %))

€y = 67—1—187 [cos(2e — w + §) —sin(2a + w + - (16)
lor the flow theory (16) is analogical using the corresponding increments. The al}gle a
which depends on stress components (tan(2c) = é”fg—:y) characterizes the location of

main stress axes referring to the arbitrary zy— co-ordinate system and vy as a function
of 7 represents the octahedron shear (v = Vi, €~ components of the deformation
deviator). From these relations it can be seen that the deformation components V\-/hiCh
qualify the solid straining can be calculated if 7, k and e are known. 7 acts as an ampht.ude
characterizing the magnitude of strains and k and a which are finite in singulz%r p01n§s
specify the kind of deformation. If one puts the asymptotic expansions above into 7 1t
can be concluded that the magnitude of deformation is only dominated by coefficients of
the first eigenfunctions because of the discrete solvability condition roots A;. These facts
suggest the following fracture analysis for solids:

1. Determination of u(¢,6) from the whole solution of the body by finite elements
or other methods taking into consideration the correct asymptotic behaviour using
the stiffness actions described above which do not depend on the distance to the
considered point.

2. Computation of C; by (8) or (10).
3. Calculation of C; by the triangle system (12) Ci = Ki;C; with Ki; = Kij(9:5)-
e gi; can be interpreted as »inner deformation metric” of the local point.

S 1
o« C; = %{0 (*+2) i valid for small &.
4. C; are the fracture parameters which get critical values in failure situations. Because
of (8), (12) and g;; they express integral magnitudes of the stress and deformatlo.n
field around the considered point. Cp acts as the main factor (and if the root Aq is

double then C; and C; both do) and the other ones operate as higher order moments.

5. k and « characterize critical stress states for the critical C;j—values. If such critical
C;—values are determined in an experimental way together with the numerical tech-
nique mentioned above then fracture predictions are only possible in connection with
the realized x and «.
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On Fig. 17 and Fig. 18 the distribution of the two parameters (tan(a), cos(3w)) char-
acterizing stress and deformation states of the pure elastic specimen solution at interface
crack tip presented above are given. I: can be shown that these Figs. remain the same for
arbitrary load values of the specimenin the linear material law case provided the "form”
of boundary conditions does not change.

-1 00E400

I-Rissc - Level 3 - 16 proc. 1gal |-Rissc - Level 3 - 16 proc. cos3te

Fig. 17. tan(e) at interface crack tip Fig. 18. cos(3w) at interface crack tip

If non-linear material behaviour (flow theory) was applied they would change during load-
ing for the same ”form” of boundary conditions characterizing different stress conditions
(local load trajectory). This way they distinguish critical fracture states if the realized
boundary value problem for any load level corresponds to failure at the interface crack tip.

Summarizing it can be concluded that macroscopic fracture estimation of solids leads to
the question of describing deformations by solid models at critical points. If this question
is solved, that means the constitutivebehaviour is known, the corresponding fracture char-
acteristics result from the asymptotic analysis presented above.

Extensions of the concepts described in this paper to geometrically non-linear material
behaviour, anisotropic material laws and three-dimensional boundary value problems are
possible as it was mentioned by Scherzer and Meyer (1996). However their realization can
only be done in the future.
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