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ABSTRACT

The general approach to accurate calculation of two-dimensional electromagnetic field
scattered by the system of infinitely thin and extended perfectly conducting screens
(defects) in dielectric slab is suggested. The slab is situated between two semi-infinite
homogeneous half-spaces of different electromagnetic properties and is illuminated by
two-dimensional E- or H- polarized electromagnetic wave. The defects system cross-
section is supposed to be arbitrary. The integral equations of corresponding diffraction
problem are derived and the numerical method of its solving is developed. The integral
equations kernels contain the usual free-space Green function and Sommerfeld-type
integrals of two variables. The efficient method of the second kernels part evaluation
is supposed. Some field calculation results for flat and elliptical cross-sectional defects
are presented and discussed.
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FORMULATION OF INTEGRAL EQUATIONS

Let the slab sides (planes y = 0 and y = —d) form the interface of media with wave
numbers of vy, x3, xs(Fig.1). The system of cylindrical infinitely thin perfectly con-
ducting defects with cross- section of Li, k=1,Nis arbitrary situated in the strip
—d < y < 0 parallel to Oz-axis. The L, arcs are supposed as the Lyapunov type
contours of arbitrary curvature. The external source of two- dimensional electromag-
netic field with the time dependence of ezp(—iwt) is irradiated the presented structure.
The arising two-dimensional diffraction problem consists in finding of the Helmholtz
equation solution, which satisfies the following conditions: of continuity on the media
interfaces; of waves absence from infinity (except exciting one); of Dirichlet (E- po-
larization) or Neumann (H- polarization) on arc L,, k = 1, N; of Meixner- type near
screen ribs (L; arc end-points). Using the Green function of diffraction problem for
a plane- parallel layer, the solution in case of E- polarization is sought as the simple
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Fig. 1. The cross section of the thin defects system in planar waveguide.

layer potential

N
E(z)= E*(z)+ 2x } /J,.(t,.)G.-(t,.,z)da.. 1)
b=1L'
In H- case the corresponding representation takes form of the double- layer potential
. N F:]
H(z) = H*(z) + zx?:“/ ma(6) =G (b4, 2)dos. (2)
Ly

Here
th € L, z ngy G"g(t,l) EG:E,H(tIZ)i g{z} 2 0;

Gea(tz)= G:,',,(t,z), Xz} < —d;
Gra(tz) =Gipp(tz), —d<z}<0, z=z+iy,

Gis.a(w)=fii —”—e"""‘"’"cos[m{z—t}lde,s{z}zo, (3)

p=1 27 33

F1 = 2(vaprs + vapas)i 11 = S{t}; fo = 2(vapys — Uspas); 12 = —2d — S {t};
Gira(tiz) = ZHY (xar) + Slp g (8,2);
17 s 0
v — —¥
S:E'H(t,z) = ,=E, ;0 ;,—:;)-e "™ cos (R {z — t}]d¢, —d < {z} <o, (4)
81 = (Vap1s — v1Pas) (vaprs + vspas); 9, = S {t + z};
33 = (V2p1s — v1pas)(Vapys — Uspas); 92 = —2d + Q {t — z};
33 = (vaP1s + V1Pas) (Vapys — vsps); Vs = —2d — S {t + z};
$4.= 83504 = —2d — S {t - z};
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$3) = (VaP1s + v1pas) (vapus + ypay ) — (vap1s — vipas) x

X (vapys + Vspa ) exp [—2dv,];r = [t = z]; pij =1 (E-case);

V& =2,

Pij = xixj (H-case); v; = R{m} 20, 4= p,i,j =173,

G,y are the suitable Green function, f; marks the partial derivative by normal at
point ¢, = z; + tys with arc abscissa 8, of contour L, Ji(ts) and my(¢s) are the
surface current densities (functions to be find), E*,H* are known distribution of the

electromagnetic wave excitation, R and < indicates real and imaginary part of complex
value.

At E- case we satisfy the Dirichlet conditions on the contours L, and get the system
of integral equations with logarithmic singularity

N
20 3 [ I, €)des = —B¥(@), (5)

h:lL.

thLh TIEL?11=1)—N.

At H-polarized excitation in a similar manner we obtain the system of singular inte-
grodifferential equations

3 X a 4 o
ZXha:ll/m.(ti)EGg(fb,z)dl. = —RH (t,), (6)
»

ty EL;, t?EL,,I: I,N.

Numerical solution of these systems we'll obtain by the variant of mechanical quadra-
tures method which Panasyuk et al.(1984) supposed.

NUMERICAL SOLUTION OF INTEGRAL EQUATIONS
Let the contours Ly, k = 1, N are described parametrically

ty = t(7), r = [-1;1] (7)

by complex-valued functions of real parameter 7. As we have ds} = |t}(r)|dr we
can rewrite the equations (5) and (6) at segment [—1,1] in normalized form. Then
we can apply the necessary quadrature formulae ( Nazarchuk, 1989) which take into
consideration the integrands singularities. When this is done, we obtain the system
of linear algebraic equations in nodal points for each of wave polarization. To achieve
the algorithm effectiveness we use the subsequent accounting procedure of the wave
rereflection from defects.

Numerical evaluation of Green functions (3) and (4) must be done with care but it is
routine. When |R{t, — ¢} is large, their integrands are highly oscillatory and cause
the integrals to be difficult to evaluate numerically. Under this condition it is conve-
nient to convert these integrals (determined over the real axis in {-plane) to integrals
along contour I' (see F ig.2). For additional computer time decrease during oscillatory
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Fig. 2. The integration contour in §-plane.

integrals evaluation we build for them the Lagrange type interpolation polynomial of
two parameters

I(a,8) = w(a,ﬂ)T"‘:‘)::’(o ._E, T",‘;‘j(:” x (8)

X i T‘;—-.l((m['(“'mﬁ’(t) =

_ T-n(T)T-n(() w_ 1 = . .
—U(a,ﬂ) mymg, ETL“T,:EIQ_(IO(G rhﬂ C‘)y
T=afe®, (= 8/B8" n = cos [2:’;11:'] y §1 = cos [2;':’11] y~1<r¢(<1,

Tu(7) = cos [n arccos(r)].

Here a* and 3* are the greatest values of the parameters a and B, which are need to

solve of the integral equations system, w(a, 3) function is proportional to Sommerfeld- ‘
type integral asymptotic behavior. In our case w(a,B) = explix|a +if|]. The functions |
I*(a*r, 8*¢)) and I5(a*n, B%¢;) we define from the relations !

I(@,8) = w(as,B)I"(a"n, B*C), (9)
l@, B) = wlaw, B ("N, B°G) T, 1(1) T, (G1), |
ap =a.ﬂ1ﬂl=ﬂ‘chk= l)mly =m'

One time numerically calculating values [3(a*r,, 8°)), formula (8) gives the possibility
to obtain an effective algorithm of integral evaluation at arbitrary arguments r and ¢.

RESULTS AND OBSERVATIONS

The numencal solution method of the previous section has been employed to determine
the field on the interface ¥ = 0 and at z — +00 (wave zone or far-field pattern). Let's
consider the particular case when excitation are the plane wave

W.(z) = e—iXIQ(J), (10)
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Fig. 3. The magnitude and phase dependencies at different dielectric permeabilities of
the underlying halfspace (the case of plane E- wave scattering).

or the own waveguide mode
Wo(z) = {R}psxaly —df2)ebe, _d <y <, 5y = xa. (11)

(27/(h;x3) is the waveguide mode wavelength; p; = vei— h}). The symbol W* marks
E* in E- case or H* in H-case.

Let the relation X1/x2 = 0.1 occurs. The single metallic strip is situated in the slab
at y = —df2. We consider an important problem of the slab properties influence at
the scattered electromagnetic field. At Fig.3 and Fig.4 we present the magnitude and
phase dependencies when E-polarized plane wave is scattered. It has been shown
that under slight variation both of the layer thickness and dielectric permeability of
underlying halfspace the scattered wave amplitude undergoes substantial changes too.
Its phase remains almost unchanged in this case. According to the phase dependence
one can find a defect, determine its shape and the depth of occurrence.

The given below numerical results correspond to the configuration shown in Fig.5.
Calculations were carried out during plate sounding both by E- and H -polarised non
attenuated planar waveguide mode. In this case the conditions of the maximum elec-
tromagnetic energy dissipation in the surrounding space have been established. Let
X1 = xs and 1.5y; = y,. In the parallel-plate region the transmitted and reflected
power magnitudes being normalized by the incident mode power respectively define
the transmission (77 = P'/P™) and reflection (R? = P [P™¢) coefficients as well ae
the dissipated out energy (E = 1 — T3 — R?). The parametrical equations of contours
L, in this case are described by formula

ti(r) = acos((x — 9)7) + ie sin((x — 9)r))e’® — id/2 + (2a + 0k -1), (12)

-1<r<1,k=13,

627



£l argE| | >
T — P T
s T i . ———
v 3 1 ~ —_—
0.24t — 3.0 1. d=072
[ 2. d=104
t 2 , N 3- d=1524
| { h
.3’ ~
0.22+ - 8 T
1 :
. ! ‘ " 32t
016756 04 02 o0 2mg,x . 06 04 02 0 2mx,x

Fig. 4. The magnitude and phase dependencies at different slab thickness (the case of
plane E- wave scattering).
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Fig. 5. Cross section of elliptical screens in the planar waveguide.
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Fig. 6. Transmission and reflection of the B- polarized wave as distance y,! and
curvature ¢ functions.
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Fig. 7. Transmission and reflection of the H-

polarized wave as distance y,! and defects
size y,a functions.
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Fig. 8. The H- polarized wave energy dissipation as the function of distance xal and
size xia.

where a and ca are the ellipses half-axis, I-distance between screens. In the E-case
we put xyza = 035, a = /2, d = x. In the H-case we assume a = /6, ¥ =
76, ¢ = 0.6. In Fig.6 the E- polarized wave transmission and reflection coefficients
as functions of distance between screens x,/ and their curvature ¢ are shown. The
functions maximums depend on distance between screens and parameter ¢ (change of
curvature ¢ is equivalent to change of screens size). Note that location of the functions
maximums depend on & weakly. For small curvature ¢ the transmission maximum
we observe at | =~ 0.4\ and minimum - at | & 0.27\ (- is wavelength). Increase of
the screens size causes the functions [T — 1| and |R| extremes shift to high frequency
range. The results of H-polarized scattered field calculations as function on distance
X3l and screens size xja are performed in Fig.7 and Fig.8. We can see that value
X326 = 0.52 which corresponds to resonance size of each screen remain extremely in
the case of its system. The resonance amplitude depends on the distance between
defects weakly. The largest and smallest transmission coefficient values are achieved
at xza = 0.48 and 0.21. The transmission resonance at ! = 0.48) corresponds to waves
rereflection by screens system. The resonance amplitude depends on the screens size
only if x2a < 0.55. The corresponding analysis of energy dissipation (Fig.8) shows that
the single defect resonance is the reason of powerful energy dissipation and the screens
system decreases this losses.
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THEORETICAL STUDY ON PECULIARITIES OF
SMALL ELLIPSOIDAL DEFECTS DETECTING
AND EVALUATION IN LAYERED MEDIAS
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ABSTRACT

On the basis of the equilvalent sources method the small
defect with 1ts maximal dimension more 1less than
electromagnetic wave length in the materlal under evaluation
are substituded by electric and magnetlic dipoles. Equivalent
dipole moments are presented as a product of a polarizability
tensor and field Intensity vector at the defect coordinate.
Such representation allows the analysis of the defect sha;t)e
and orientation 1Influence upon scattered fleld to reduce to
the polarlzablllity tensor Investigation. Numerical analysis
of the dependence of the vold spheroldal defect shape and
or%entation upon equivalent dipole moment has been carried
out.

KEYWORDS

Equivalent sources method, equivalent electric dipole,
layered media, ellipsoldal defecl, nondestructive testing.

THEORETICAL BACKGROUND

Dipole Model. For the case of small defects while a « A, 1In

which a 1s the greatest defect dimension and A 1s a
wavelength 1n the materlal with defect, scattered fleld with
sufficient for the practical purposes accuracy 1s deéscribed
by a dipole model. Such mathematlcal model results from the
equlvalent sources method 1In which small defect 1s
substituted by sum of the electric and magnetic dipoles with
orientation depending on defect shape and orienfation and
primary electromagnetic field electric and magnetic intensity
vectors direction. Besldes dipoles moment value depends upon
defect and medla electri¢c and magnetic permeablllty
correlations (Senior,1976). Then the problem 1s reduced to
three 1ndependent subproblems:
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