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ABSTRACT

A method of analysis based on probabilistic theory is presented for statistical mod-
¢iling of the surface fatigue crack growth(SFCG) at the weld toe. A procedure to es-
timate parameters in the model is illustrated, using the experimental data of the
SFCG at the weld toe obtained from a replicate test program of A131 steel butt
joint specimens under constant amplitude loadings. The statistical natures of the
SFCG at the weld toe were investigated. The limit state of the surface fatigue crack
growth at the weld toe was constructed, and the residual life distribution function
for the surface fatigue crack growth at the weld toe is derived.
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INTRODUCTION

Most fatigue failure in welded joint are related to the surface fatigue crack
growth(SFCG) at the weld toe. Hence, the SFCG analysis is one of the major tasks
in the fatigue design and life ‘prediction of the welded structures. Several models
based on the principles of fracture mechanics for prediction of fatigue crack
growth(FCQG) in components and structures under dynamic loads have been pro-
posed, the best known being the Paris—Erdogan law:
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o c(AK)™ (1)
dz

in which dX" / dt is fatigue crack growth rate, ¢ is time or cycle, X is crack size at ¢,
AK is stress intensity factor range, C, m are constants.

The SFCG at the weld toe usually shows considerable statistical variability, because
inevitable effects of the welded joint, such as the stress concentration , residual
stress, microstructural and mechanical properties of HAZ, ets. , involve
characteristically random. The nature of the SFCG has been cunsidered to be a
nonequilibrium irrevesible time-dependant kinetic process, that is a stochastic pro-
cess. The deterministic method is unavailable for this kind of time—dependant frac-
ture. As a result, probabilistic fracture mechanics approches to deel with the FCG
have received considerable attention(Prown, 1987) and some probabilistic models
have been proposed. Probabilistic models of FCG are random growth laws where
C, m are considered to be random variables(Tanaka et al., 1981). Based on the
probabilistic model of FCG, we shall present a new model which will for the first
time give the statistical distribution of the SFCG at the weld toe.

EXPERIMENTAL DATA

To show the statistical variability of the SFCG at the weld toe, crack growth time
histories are given in Fig. 2. These test results were obtained from a replicate test
program of A131 steel butt joint subjected to constant amplitude loadings. The
specimens used in each test were take from a single butt joint of A131 steel (Fig. 1.).
Each test was conducted by the same operation on the same machine. The load
range is 300k N and load ratio is 0. 1.
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Fig. 1. Butt joint specimen with surface crack.
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Fig. 2. Surface fatigue crack growth time histories of

Butt joint specimen.
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From the fracture mechanics standpoint, the fatigue growth rate of the crack length
X, and depth X, is given by the Paris—Erdogan law:

dX, m
4 =C@K)™ (=1 @

where the stress intensity factor of the crack len gth and depth can be expressed as:
K, =asinx, , (3)

where a, is a geometrically related parameter, and S is applied stress. If the speci-
men size is given, then @, =aX). If introducing Eq.(3) into Eq. (2) one obtains:

dx

T;:C’(ASG) la:"t(X‘)le‘,/Z (4)
indicating that dX,/ d: is function of X, The data processing shows that each
sample process dX‘ /dt vs. X, relationship can be expressed as follows:

dx

i
IETI =1gD, +n lgx, (5)

or:
dx

1 n
dt =DIXI’ (6)

\'thrc D, n; are random variables. The SFCG rate data show that dXx,/dt is
linealy related to dX,/ d¢ in given crack size range,i. e. :

dx, dx
—_ =
dr dr ™

where k is a random variable.

STATISTICAL ANALYSIS

Experimental test results show that the SFCG data exhibits considerable statistical
variability. Such a variability should be taken into account appropriately in the ana-
lyfs.is and design of fatigue—critical welded joints. In particular, in the fatigue relia-
bility analysis of welded structures, statistical is required for the SFCG at the weld
toe. In this section, statistical analysis is carried out for parameters of the SFCG
model. For each test specimen the parameter 1gD, , n, and k are estimated using
the linear regression analysis. All data sets give a sample of 20 estimates of
18D, , n, and k. The normality hypothesis applied to the three variables,
gD, , n,and  k, cannot be rejected on a 15% significance level by
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Kolmogorov—Smirnor(K—S) tests for goodness—of—fit, indicating an excellent fit
for the normal distribution.
The correlation between the IgD, and n, is linear, i.e.:

gD, =—-6.7984+1.9231n, (8)
1gD,=—6.7934+2.0620n, %)

and IgD, and gD, ora, and n, are independent.

In order to recognize the basic statistical nature of the SECG at the weld toe we
take n, as the ensemble average n and D, as random variable 5, . K-S test show
that lgﬁ, follow the normal distribution, 5, becomes a lognormal variable. Eq.(6) is

referred to as the lognormal random varialble model. The mean value and standard
deviation for all the parameters are summarized in Table 1.

Table 1. Mean value and standard deviation of parameters.

Parameter 18D, n, gD, n, lgﬁl lg5z k
Mean 34265 53169 4.1330 52989 2.7990 3.4913 06338
S.D 1.1979  0.6211 1.4476 0.6896 0.0956 0.2518 0.1679

For the lognormal random variable model, the statistical distribution of the crack
growth damage accumulation can be derived analytically as follows.

The distribution function of the lognormal random variable Z is given by:

logz — E[logz]] (10)

F(z) = P[Z <21="’[ Vvar[logz]

where Z = D, .The distribution function of crack size Xl(t) at eny service life 1 can
be obtained from that of Z given by Eq.(10) though the integration of Eq.(6). The
results are given as follows:

Fix,)=PlXx () <x,]
[tog[(xoj' —x, )/ q1] - E[logD/]]

\/var[logD’_] (n

inwhichg=n—1, X ,, 1s theinitial crack size.

Let T(X_)be a random variable denoting the time to reach any given crack
size,then, the distribution function of T(Xc) can be obtained. The results can be ex-
pressed as follows:
F(t)=P[T <))
log((x,,“ —x")/ q1)— E[logD ]
(D[ Jvar{logD )] ]
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RESIDUAL LIFE DISTRIBUTION

In the design based upon the damage telerance principle, it is most important to
know the structural components life. If the crack growth process has some
uncertain factors, we must treat the structural componts life as a stochastic va-
riable. In the bivariate problem of surface fatigue crack growth, a failure criter-
ion illustrated in Fig. 3. where the shaded area represents the region of failure.
The unstable failure takes place when the vector process X (r) grows to arrive at
this shaded area for the first time(Tanaka et al., 1989a, b). Let L(x, »X,)=0 be

the limit state function for the growth of the surface crack. If L(Xn’Xz) <0,

then the component can stand against the general service, when the process ar-
rives at the state 1,(X|,X7):0 for the first time, the unstable failure takes

place.
As for the boundary of failure region, we are concerned with the simple cir-
cular curve in Fig. 3. The radius of the circulur curve is given as follows:
2 2
% cl +x c2
L =— (13)

‘ ZX c2

Therefore, the time of the following stochastic process:
Xf(z) + Xi(!)

L= 2x ()

(14)

takes to grow up to L _for the first time can be considered as the surface crack

growth life of the component.
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Fig. 3. limit state curve and failure region.
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Integration of Eq.(7) yields:

Xz(t)=kX|(t) (15)
Then, Eq.(13) and Eq.(14) becomes:
(U +&5)x
L = ———— (16)
c 2a

and:

(1 + &%, (1)
L(r) = B P (17)
Then, the problem is transformed to the first time of the process X' (¢) growing up
to L . From the Eq.(12) we can obtain quantities which are of prime interest in fa-
tigue life prediction. For instance, Probability ditribution function of the residual
life as follows:

_x‘—l")/qt)—E[long]:l (18)

log((x
H, (X, X)=1-0® JvarllogD ]

The residual life distribution function at different service time for several values of
the initial aspect Xo and limit state are presented in Fig. 4.

0 2 4 6 8 10 12
Number of cycles (x10%)

Fig. 4. Residual distribution function
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CONCLUSIONS

In this paper, the probabilistic model of the SFCG at the weld toe was investigated
based on the test results. The statistical analysis was carried out for parameters of
the probabilistic model, using experimental data of the SCFG at the weld toe. The
probabilistic model correlates well with the test results. It is very attractive for prac-
tical applications due to the reasons: (a) it is mathematically very simple for practi-
cal applications including analysis and design requirements, (b) it may reflect closely
the SFCG behavior of real welded structures in service.
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