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ABSTRACT

This article deals with the evolution of the plastic zone in notched bars as a function of the
constitutive equation of the material and the geometry of the notch, with special emphasis on its
implications in environmentally assisted fracture (EAF) of metallic specimens with such kind of
seometry. The analysis is focussed, firstly, on the evolution of the local strain rate at the notch
tip, whose role in environmentally-induced fracture processes is determining, and secondly, on
the comparison between the plastic zone size and the hydrogen affected region in hydrogen
cmbrittlement tests, which clarifies the hydrogen transport mechanism.
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INTRODUCTION

tnvironmentally-assisted fracture (EAF) always involves a transient or time-dependent
process, either dissolution of material produced by the environment, or embrittlement due to
hydrogen created by chemical reactions. In any case, there is a balance between the action of
the aggressive environment and the time, which determines the severity of the process (Scully,
LO80; Ford, 1982). In this context, plastic zone evolution —which is itself also a transient or
time-dependent phenomenon— has fundamental importance in controlling and influencing the

FAF process.

Por fracture phenomena which promote metal dissolution (anodic regime of EAF), failure load
increases or decreases as the displacement rate increases, because there is a balance between the
creation and rupture of the oxide film on the sample surface (Parkins, 1979). For hydrogen
embrittlement phenomena, in which there is no metal dissolution (cathodic regime of EAF),
farlure load is always an increasing function of the displacement rate, since the slower the
loading process, the more the hydrogen diffusion into the sample (Scully and Moran, 1988).

However, the displacement rate is not the variable actually representative, and it only allows the
«stablishment of qualitative phenomenological relations. To obtain quantitative relations and
compare results from different EAF tests, it is necessary to calculate the local strain rate at the
«rack or notch tip, because at that point the environmental attack is localized and crack (or



notch) tip strain rate controls the environmental cracking process (Rieck ez al., 1989). The only
previous research about this matter refers to the computation of (local) strain rate at a crack tip
(Lidbury, 1983; Maiya, 1987; Andresen and Ford; 1988; Parkins, 1990). An inherent
limitation of all these expressions for local strain rate at the crack tip is that they do not take into
account the constitutive equation of the material and the spreading of the plastic zone, which
clearly influences the value of local strain rate, as is demonstrated in the present paper.

In the case of hydrogen embrittlement, the interactions between hydrogen and plasticity are
now well known (Hirth, 1980), and two main types of hydrogen transport in metals have been
proposed: lattice diffusion (Johnson er al., 1958; Troiano, 1960) and dislocation sweeping
(Tien et al., 1976; Johnson and Hirth, 1976). There is a strong controversy about the main

mechanism of hydrogen transport in steel and whether or not dislocation sweeping can be
considered an embrittlement mechanism per se.

This paper is focussed on the spreading of the plastic zone in notched bars, as a function of the
constitutive equation of the material and the geometry of the notch. An analysis is made of the
influence of plasticity development on the evolution of local strain rate at the notch tip, which is
the relevant variable in EAF processes of any type (anodic dissolution or hydrogen
embrittlement). Regarding specifically hydrogen assisted fracture, the evolution of the plastic
zone allows the establisment of conclusions on the interactions between hydrogen and
dislocations and on the main hydrogen transport mechanism.

PLASTIC ZONE EVOLUTION

The material model used in the computations corresponds to the real hi gh strength steel used in

the experimental programme, whose stress-strain curve can be represented by the following
Ramberg-Osgood equation:

€ = 6/199000 + (6/2100) 42, & in MPa )

Four axisymmetric notched geometries of maximum and minimum notch depths and radii were
chosen (Fig.1), with a diameter D=11.25 mm.
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Fig. 1. Notched geometries (R: notch radius, A: notch depth, D: sample diameter).
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EFFECT OF PLASTIC ZONE ON LOCAL STRAIN RATE
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Fig. 3. Relationship between local and gl i
: ¢ global strain rates
and evolution of the plastic zone ( geometries A and B).

Local strain g is defined as the strain associated with a local reference length L, (small enough
to guarantee the convergence) parallel to the bar axis and placed at the notch tip, i.e:

gL = ALL/ LL (3)

Global strain egis defined as the relative displacement between the ends of a sample of length L.
(global displacement ug), divided by a characteristic length of the geometry (diameter D) to
obtain a dimensionless variable:

€g= ug/D (4)

It must be noticed that global strain is a dimensionless displacement and, contrarily to local
strain, it is not a strain in the Continuum Mechanics sense, since the strain is non uniform along
the axial direction in a notched geometry. Strictly speaking, therefore, it should be called
dimensionless global displacement.

Local and global strain rates can be obtained on time-derivation of expressions (3) and (4).
L= (ALU+! - ALY /Lo/ At )

&g = (ugitl —ugl) /D /At (6)

where superscripts i and i+1 mean a loading step and the next one. The value At represents the
time interval between two loading steps, which can be constant or variable from one to another
step. From considerations of convergence, the chosen values for local and global reference
lengths are L1 =0.01D and L=4D, respectively.

In Fig. 3, a plot is given of the relationship between local and global strain rates as a function
of global strain (for geometries A and B). Evolution of plastic zone is also presented (shaded
area). Relationship between local and global strain rates changes with the time, as the plastic
zone spreads or the global strain (or more properly global displacement) increases. For all
geometries analyzed in this paper the curve has always the same general aspect, an three
regions can be distinguished, each of them representing a phase of the process:

(i) Region I (Elastic phase): Horizontal. The whole sample is under elastic regime. The
relationship between local and global strain rate is constant or, in other words, a constant
externally applied global strain rate produces a constant local strain rate at the notch tip. In
this case the elastic phase only represents a small percentage of the whole loading

process. Length of elastic region is a function of yield strength of the material, increasing
with it.

(ii) Region II (Transition phase): Big slope. Plastic deformation starts at notch tip and
spreads progressively towards the inner region. The shape of the plastic zone depends on
the particular geometry, while its size increases as global strain rate increases.

(iii) Region III (Plastic phase): Slightly increasing or quasi-horizontal. Plastic zone
reaches the sample axis. In this case the relationship between local and global strain rate
is more or less constant, but there is a clear magnification of local strain rate of the notch
tip due to the fact that all net section is under plastic regime.

The above facts demonstrate the effect of the spreading of the plastic zone on the evolution of
local strain rate at the notch tip, which is the relevant variable in EAF processes on notched
specimens, as demonstrated in previous works (Toribio and Elices, 1992).




EFFECT OF PLASTIC ZONE ON HYDROGEN TRANSPORT

This section tries to establish experimental bases to clarify the main mechanism of hydrogen
transport in pearlitic steels, by relating the spreading of the plastic zone with the hydrogen
affected region in hydrogen embrittlement processes. The analysis is based on the existence of
a non conventional microscopic fracture mode, the Tearing Topography Surface (T.TS.),
associated with hydrogen embrittlement phenomena in this kind of steel (Toribio ez. al, 1991),
whose fractographic appearance is given in Fig. 4.

Fig. 4 Tearing Topography Surface.

The correlation between the Tearing Topography Surface and hydrogen effects gives an
approach to clarifying which is the main mechanism of hydrogen transport. The TTS size has
to be compared with the distribution of hydrostatic stress in the sample, or with the extension
of the plastic zone, depending on the mechanism of hydrogen transport under consideration. If
lattice diffusion were the predominant mechanism, then the hydrostatic stress would be an
outstanding variable. On the other hand, if hydrogen were mainly transported by dislocation

sweeping, then the evolution and size of the plastic zone would be relevant , since outside that
zone there is no movement of dislocations.

The elastic-plastic FEM analysis demonstrated that the h
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analysis of hydrogen transport, since the point of m
center of the net section in this case, and therefo
producing a broader affected region detectable by
providing a plastic zone small enough to restric
area. The probability of detecting hydrogen effect
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re hydrogen is atracted to that point, thus
fractographic analysis, while at the same time
t the movement of dislocations to a reduced
s outside the plastic zone is high.

For the experimental programme, a commercial hot rolled pearlitic steel —~whose stress-strain
curve can be modelled according to the Ramberg-Osgood expression (1)- was used, machined
with the four geometries analyzed in previous sections. Slow strain rate tests (SSRT) were
performed in an aqueous solution of 1 g/l calcium hydroxide plus 0.1 g/l sodium chloride, with
a pH of 12.5, at a constant potential of -1200mV SCE, corresponding to hydrogen
embrittlement conditions (Toribio et al., 1991). A broad range of displacement rates (between
10-10 and 10-7m/s) was covered in the SSRT to evaluate different degrees of hydrogen
damage. For comparison purposes, two fracture tests of each geometry were performed in air.
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Table 1. Evolution of the plastic zone and hydrogen affected area
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CONCLUSIONS
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