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ABSTRACT

The paper presents a basically new calculation and experimen-
tal method for studying various aspects of crack resigtance
of sheet structural materisls under biaxial loading. A pro-
cedure is proposed and substantiated for processing test re-
sults for gwo types of specimens with cracks for the case of
brittle and elasto-plastic fracture. Experimental results

are presented which illustrate the application of the propo=-
sed method,
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INTRODUCTION

The paper presents fundamentally new equipment and method
for studying various as ects of sheet structural material
crack resistance under Eiaxiel static and cyclic loading.
The idea of the method is in the establishment of the relat-
ion between the stress-strain state at the crack tip and the
displacements on the boundary of the area surrounding it,
This approach is the result of practical considerations and
differs from the conventional ones (e.ges see Moyer and
Liebowitz, 1984) when the stress-strain state at the crack
tip is related to the stresses at infinity. Indeed, if a
crack is initiated in a structure, it is unlikely that the
area of the material uniform stress state could be found
around it, which would correspond to the model of an infinite
plane, due to the presence of various technological stress
concentrators and other design factors. At the same time, it
is practically always possible to measure displacements on
the boundary of a comparatively small ares surrounding the
crack. And in this case to predict the crack behaviour in a
structure one should determine the material crack resistance
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under biaxial loading by displacements adequate to those
occurring in the structure, Thus the feasibility of the
realization of the approach proposed is obviousg and it pre-
determines the development of Specific experimental devices,
8s well as respective mathematical models for the interpre-
tation of the experimental data.

SPECIMENS AND TESTING DEVICE

ethod involves disc~shaped (Boiko snd Karpenko,

plane specimens with central precracks. The loade
ing scheme for a disc-shaped specimen ig presented in Pig. 1.
th its conical surface on round support 2

Fige 1. Disc specimen (a) and the scheme of its
loading (b),.

cimens. For thig purpose one should separate the disc-speci=-

men working section and its rim (Fige 2). In this case the

rim glays the role of reusable fixture 1 of plane circular
men 2 fixed by means of pins 3 arranged round the peri-

meter of the fixture. In order to reduce the loads applied

to the fixture, the latter is composed of separate sectors

made of g high-strength material. During the specimen assem-

lindric projection 4. Important éxperimental parameters in
the specimen testing are radial displacements of itg working
3ection boundary which can be measured, for instance, with
tensometers. The application of the above experimental chara-
cteristics to define the stresg-strain state of the specimen
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5 4 working section having a
crack will be discussed be-
low.

Kinematic relation between
the geometrical parameters
of the punch, the support,
the fixture section and the
gpecimen during its loading
is described by a transcen-—
dental algebraic equation,
the analysis of which allows
one to conclude that vari-
ation of the fixture and
Ssupport contact arm size ig
an effective means to achi-
eve the conditions of biax-
ial tension with the prescri-
bed displacements in the
specimen working section. A
schematic of the device for
the realization of the abo=-
ve approach is shown in

Fige. 3. It comprises alig-
ned punch 1 and Support 2
with fixture 3 of Specimen
4. The fixture is made as

a trunkated cone consigting
of separate sectors 5 with
radial arrangement in re-
spect to punch 1 whose tg-
pered surface 6 can come in-
to contact with Supporting elements 7. Supporting elements 7
are made of equal height and positioned in guiding recesses

8 and can be moved in radial direction and clamped in pogite
lon. Guiding recesses 8 for the installation of Supporting
elements 7 are made along the generating surface 9 of support
2+ The quantity of Tecesses 8 corresponds to the number of
sectors 5 in. fixture 3. The working surfaces of the gectors

Fig, 2. A device for testing
plane specimens in
biaxial tension

gositioned in guiding recesses 8 of support 2 at a different
istance from the axis of punct 1. The plane of the larger
base 11 of fixture 3 isg mating with punch 1 while the smaller
base is intended for fastening specimen 4 with bolts 13,

CAICULATION SCHEMES

Parameters which characterize the loading of a disc or

plane specimen (Figs 1, 2) are radial displacements of itsg
working section boundary measured by means of tensometers.
Considering the geometry of the gpecimen workinf section, it
is feasible to formulate the probEem of theoretical determi-
nation of the 1load carrying cagacity for a disc or plane
Specimen with a crack as s problem of the elasticity or pla=
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Fig. 3. A device for testing plane specimens
in biaxial tension.

stigity theory for a crack in a round disc with specified
radial displacements Wp(B8) of the circular boundary points
whose distribution ig described by the following law:

W, () = W, cos®8 + w, sin?g (1)

where 8 is the polar angle, W; and W, are the radial di-
Splacementsg along the abscissa and ordinate axes, respective-
ly, which intersect in the centre of the circle. At small va-
lues of w, and W, distribution (1) does not practically
differ from elliptical.

The elasticity theory problem for a circle of radius R with
a8 straight-line central crack of 20 1length with prescribed
radiel displacements on its boundary (1) is reduced to the
following singular integral equation to te solved for the
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unknown function §(t) proportional to the derivative of the
displacement discontin%ity on the crack faces (Boiko, 1991):
L

1
] 2 gt 2—.& e, D4t =Gty -t<t et

JIi : t -t T ! (2)
where
“ 1 GRSt 2 H-tRE3ty) 2 £ty :
o= 2o *x Ri-tte 0 (RP-ttg? o (Rogg )
W=7 =7 \=r ‘?'W*mto>’ (4)
b= (w,-w,) /(W +w,), (5)

M  is the shear modulus, X =3-4y for glene strain and
% =(3=9)(1+Y) for a generalized plane stress state, y ig
the Poisson ratip,

The numerical and approximate analytical Solutions of eq. (2)
have been obtained. On the basis of the latter, the exXpres-—
sion for a dimensionless Stress intensity factor at the crack
tip ig written in the form

-1 n ®-1
Z;xﬁfztw:): 1+f;\f\z [1-b = (2+3-8AD)], (F)
where A={/R,
n=(ad-%%+7%-3)/ [4n(%-1] . (7)

Comparison of the numerical and approximate analytical cal-
culations reveals that eq. (6) provides a fairly high accu-
racy of the calculation at A& 065

The elasto-plastic problem for a round plate of elastic-ideal-
ly plastic material with a central Dugdale's crack (Dugdale,
1960) of length 2L with specified radisl displacements on
the plate boundary (1)is reduced to the following gingular
integral equation (Boiko, 1990):

R ) . i
ﬂgt_“todt+m&s<to,t)g(t)dt-F(to), L<toct, (o)
. X

Op +Glty) , L<ltyl<ty,
G(ty) 1Tl ¢ L.

Functions 3(to,1) and Gty are defined by eqs (3) and (4),

t=1+Q, 0 is the plastic zone size at” the crack tip deter-
mined from the solution of the problem; Op 1is the material

where

Flty) =
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yield strength, ® is the elastic constant.

The numerical and approximate analytical Solutions of eq. (8)
have been Obtglned. On the basis of the latter an exXpression
for the plastic zone size is written in the form:

T ®-1 p
Q2eeos(s) + A NS v1-s2 = JEL [1- 6Tx (x+3—8)\2\]a, (9)

where

P=2p(Wy+w,y)/ [(R-DR], A= L/R,

expressions for 0 and N are determined in accordance with (5)
and (7), s= L/t =~ 1-qa /e, The crack tip openi

; ng di -
ment related to !, is defined from the fgrmgla & Tplace

(1+30)0p e 2-1 P 3 2 1
2h {—b)\ T?PUS)Z'*ETS[H—']. (10)

o) =

of certaip interest for the analysis and interpretation of
the eXperimental results ig the distribution of local stres-

crack tip. As is known (Alpa et &l., 1979) the crack model
Used is valid at stresses Oy which {n the plasti Zone ot
crack tip satisfy the condition R Bone =t e

O'm/D’g €1,

in which we shall use the Stresses at the crack tip Qn=0&(5)

EXPERIMENTAL RESULTS

biaxial tension including nonumiform one was studied usgin
plane 1«5 mm thick specimens (Fig. 2) of aluminium alloy.g
Central linear cuts of lengths 10, 20 and 30 mm oriented
along one of the main axes of the specimen deformation were
nade by elegtric—spark technique that made it possible to get
Fhe slits with the curvature radius at the tips of 0,03 mm.
Mechanical broperties of the aluminium alloy were determined
using a sFandard method and were: E=71500 Mpa, v =0.32,

Op =320 Pa. The anisotropy of the material mechanical pro-
perties dig not exceed 1%. The experiments were performed
with the prescribed displacements on the boundary of the spe-
cimen working section in accordance with eq. (1) for diffe-
rent W; and W, ratios along the main axes of the specimen
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deformation. The limiting Wy and W;* values of displacements
corresponding to the crack growth onset moment were measured
on the basis of 2R=50 mm.

The procedure of the experimental results processing is asg
follows. First, the dependepces of the relative crack tip
opening displacement A =2M S/ LU+®)0p]  on the parameter
YWy + W) /R (where § is the dimensionless constant
A/ [(®-1)0p]) are determined by computation. Then, using the
results obtained we define Ay whic corresponds to the crack
growth onset for displacements wy* and W,* determined from
the experiment. This makes it possible to find the dependen-
ce of the cri%ical value of the absolute crack ti opening

A

displacement on the u%/ua parameter (Fig. 4 a). These
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Fig. 4. Dependence of the critical crack tip opening displa-
cement on the parameter (a) and on the normal
stress ratio at the crack tip (b).

data are useful for the evaluation of the structural element
ultimate state within the framework of the conception formu-
lated in the Introduction. The following step is the con-
struction of the O0x/0y (the local stress ratio at the
crack tip) dependence on the parameter w(uh;UQ)/P . Using
these results and the experimental W and w, values, we
find the relationship between the critical value of the ab-
solute crack tip opening displacement 0; and the Ox /0y
parameter (Figz. 4 b). The above dependence characterizes' the
crack growth resistance of the tested thin-sheet material

of the given thickness.
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CONCLUSION

The proposed method based on the establishment of relation=-
ship begween the stress-strain state at the crack tip and

the displacements on the boundaries or the area surrounding
i1t appears to be promising from the standpoint of the maximum
8pproach (as to the type of stress state) of the laboratory
test conditionsg to real service conditions of a structural
materiagl, In addition, the advantage of the equipmegt deve=-
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