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ABSTRACT
The paper presents the basic types of singular integral equations which arise in the theory
of elsctromagnetic nondestructive testing. The quadrature formulae for evaluation of
integrals with logarithmic singularity as well as hypersingular (according to Hadamard)
integrals are supposed. The direct numerical algorithms of these equations solution are
constructed and discussed.
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INTRODUCTION

Modern calculation of construction elements durability which is founded on the fracture
mechanics approaches includes an information on their defects. Such information fre-
quently can be obtained using the electromagnetic methods of nondestructive testing.
Diffraction theory forms a basis for these methods. Take into account a wide frequency
range of sounding, arbitrary geometry of the defects and their location we can perform
computer modelling of the wave interaction with a material inhomogeneities. While
solving the scalar problems of diffraction theory one should use the approach supposed
by Panasyuk et al. (1984), Nazarchuk (1989).

INTEGRAL EQUATIONS OF THE PROBLEM

Let us designate by L the set of cylindrical surfaces directrices lying in plane zOy and
by W(z,y) - the longitudinal (along axis 0z) component of the scattered field. Let
it be required to find the finite continuous function W (z, y) satisfying the Helmholtz
equation

(A+x7)wW =0, (1)
the edge condition of type

linap gradW =0 (2)

p—

(p is the radius of small circle enclosing irregular point of contour L), the radiation
condition of form

. 1 aw 1 i
W ~ ifr —_ S o o —ifr = s
e¥'0 (\/F) " B ixW ~o (\/F) e , B=9x2>0, r—oo (3)
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(symbols R and < designate the real and imaginary value parts) and one of the boundary

conditions W (2,) OH*(s)
- _E* Wlsy) _ _9H(s)
W(.t, y) L - E (")t Bn L a" (4)

on contour L (E* and H* are the definite functions of arc abscissa ). We consider the
solution of the diffraction problem formulated in such a way exists and is a unique one.

Let's agree that symbol z will further designate the affix of point M(z,y) assuming
z = z+iy. If point M (z, y) with affix z belongs to contour L, it (as well as its affix) will
be designated through ¢. And, finally, complex conjugate values will be designated by a
top bar. Let, for definiteness, contour L consists of N open and closed Lyapunov curves
Ly, k = ﬁ (contour L; will be considered the Lyapunov curve if angle ; between
the positive normal to L; and axis Oz, as the function of point ¢, satisfies the Holder
condition |$4(t;) — ¢u(t)] < Alty — 4%, 0 < p < 1). Each of the curves L, will be
considered as a simple one and related to the local Cartesian system z,04ys. In the
basic system zQy points O, are determined by the complex coordinates 2§ = z{ + iy}
and axes O;z; form angles @), with axis Oz.

Let’s introduce the function into consideration
i N X T, —z &
W(z,2) = 3 z: / [J.(:)Hél)(xn) - xm,,(a)Hl(l)(xr;)R('——e "')].d:, (5)
5-_-1;. ]

where ¥y = ¢y + ap;ry = Ty —2|; Ty = ¢, exp(ia}) + z}, the densities j;(s) and m,(s)
are determined by relations

o) = =52 (G - B) s malo) = (e -, (©)

the superscripts "+” and " —" mark the boundary value when it tends to contour L,
from the left or from the right.

In case of separate location of curves L, formula (5) gives solution of the boundary value
problems (1)-(4) as specified jumps of potential W and its normal derivative dW /dn on
N contours L;, k = 1, N. In this case to obtain the expression of function W -in the local
system z,0,y, it is sufficient to put z = z0 + z, exp(ia, ) in (5). It can be shown that
representation (5) remains valid for the cases when some of the arcs L, have common
end-points. In this case in (6) the boundary values of the Cauchy type integrals at the
inner points of curves L, are taken according to the usual Sokhotskiy-Plemelj formulae.
The boundary value at end-points of the arcs L; are taken as the sum of the boundary
values of all the terms included into (5).

Accounting for the above said for the boundary values of potential (5) and its normal
derivative we shall obtain the representation

ow=* (12, T?)
ano

ow (12, 1?)

= Fr5(s0) + ne

’

w* (TS,T:) = Xxm,(s)+ W (Tf,Tf) :
(7)

where the direct values of the respective functions are given by the formulae

W (T2,T2) = 1'2-"2_::/ {j.(s)Hé"(xn) —m.(a)[%* (T—:_'—To) +

xR (BLem) a0 = 2w, mo-o

Th

o ey e ————

oW !T,?,Tf! ZN: / {j.(a)[&( 0¥

. 710
) + ﬂle(xrh)R(ue"':) ]+
2 Ta

o, &l T, 19
i(93+9)) x ; o
+ma(o) ~ R( ) + o (BO e -9 - (®)
Ty =T arees 4 1
~Hir) (7 e ™) )| Jas, BPG) = B+, B0 = S

The hypersingular integral figuring in (8) at k = v is understood in the sense

[ moR( S s = [ R au s amwio(22), )
Ly Ly

(t, — t9)3 (t — A ey

where L} = L,\Q(e,,t0), Q(e,,2) = (t0 —¢,, £ + ¢, ), the arc abscissa s, corresponds
to point £2€L,,.

With the structure excited by the E-polarized wave the system of integral equations
due to (4) will be written in the form

v .
S [ FH  (rads = -BNTT), r= LTS, v=TN. (1)

balz.

With it being solved, the diffracted field at an arbitrary point z of plane zOy will be
determined according to the formula

" N
E(z,3) = E*(z,7) + 52- y /j,,(a)Hé”(xr,)du, =Ty -z (11)

l=l;.

When the H-polarized wave falls (W=H"') for the diffracted field we shall have the

representation
N T — '

H2) = B 3)=x g L [ mi@ B ()R B2 )do, = 1), (1)
i=lL.

and the densities of the transversal currents will be determined from the system of
integral equations

N x5 - (e T =18 , e
Z [ [P )R =9) - B rayR( BT e 4 =
SH*(T® 0 Eem—
= H(T,,,T,,), rj=lTl"Tn?'! v=1,N, (13)

an,
which contains at k = v the logarithmic and hypersingular integrals.
From (7) and (8) the generalization of the equations in case of impedance conditions on
contours L, of the form ’
( oW

W+ a—a-n—) (L = F(s) (14)




is evident. Note that at the end-point c, (on the arc L, the arc abscissa s, corresponds
to it), which is not common for several contours, from the condition (2) of the boundary
value problem the equality my(s,)=0,r = 1, M < 2N follows, which is necessary to be
taken into account when building up the algorithm of numerical solution of (13). The
case M = 2N corresponds to separate location of open ¢ lindrical surfaces and allows
for the transformation of (13) into the system of integrodifferential equations of the form

Ly v

k=1
T -T? ; o H*(T?,T?
- H’("")R(F:T'Tloe'('"")))]d'} = ._a___g"_-;u'_), v=1,N. (15)

The same equations are obtained from the system (13) also for the problem of diffraction

by N perfectly conducting cylinders of an arbitrary profile due to the known formulae
for differentiating the integrals of Cauchy type along the closed contour.

Let in the local coordinate system z,0ys the parametric equation of the L, arc be
known: ty = t3(r), =1 < 7 < 1. Then the equations included into the systems (10),
(13), (15) have, respectively, the structure

1 1
~ [inmalr—gldr + [ i(K.(r@)dr = F(O), —1<E<t;

I m(r) _ [ _ _1 [ m(7)
o= [ mir)Rir Olalr ~dlde z[fl(e)_/l it
+10 [ 2]+ [ KA ir = AO, gl (09

) 2L — | mo)R(r ) — g+ [ (A Qdr = FlO)

where all the functions occurred are regular in the domain of their arguments variation,

the complex variable z may be located near-by the segment [—1,1].

When among the arcs L; there are closed contours specified by the parametric equations

ty = t;(?, 0 < r < 2% ta(r) = ta(r + 27), it is sufficient to change the integration
t

limits and the singular kernels in the relation (16) according to
} 2r T—f
_/l—»o/; ln|r ¢l —In|sin =~
PPN D L WY NN L—
(- —ret () -0" = e

Thus, solution of the initial diffraction roblem was reduced to solving of the type %16)
equations (reduction of the relations (llg, (12) to the normalized form 1s obvious). Their
direct numerical solution implicates availability of special quadrature formulae for the
logarithmic and hyr ersingular integrals. Let’s consider these cases separatly.

LOGARITHMIC SINGULARITY
The following integrals are meant:

2
1 T—f

ne) = [ fmlsin i f(0) = frr2e), EEl

0

hw) = [w@f@ml -z, vel-11] (18)

For approximate calculation of functions J, ; we shall use the interpolation type quadra-
ture formulae built up by means of the proper a proximation of density f and further
exact calculation of the integrals. Concerning Jy(€) such procedure leads to the follow-
ing well known result. When interpolating the continuous 2x-periodic function f(7) in
n nodes n = 2xk/n, k = 0,n —1 by means of the trigonometric polynomial fp(7) of
the order p = [n/2] :

b= 5 i 42 5 comin =l = = CV° cufpn — I}, (19)

for the arbitrary £ € [0, 2x] the quadrature formula occurs:

(€)= —fo f(r,,){ In2+ z'_jl R - L (ol TSR —c)]}. (20)

=0 2n
Formula (20) is exact if the density of integral J;(§) is polynomial of order not higher
than [(n—1)/2] (symbol [ ] means the integer part of the number). If the weight function

in the integral J3(y) looks like w(z) = (1 — z)*(1 + z)?, Ra > -1, R > -1, then the
following relations will be the analogues of the formulae (19) and (20):

fe) ~ 3 ALH(ms) T AZIPER (2 PE(2) (21)
A=1 m=0

(4 are the roots of the Jacoby polynomial P{*#)(z); A} are the Christoffel numbers;
h,, are the squares of the norms of polynomials P{#)(z)) and

h(y) = 3 A F(#0)S(5s,0);

h=1
S(any) = Al - T PE(2a)ge O W) (mha) (22)
) = e OO, o) = -5 [ o) E e, £ (1,1

-1

As was shown (Nazarchuk, 1989) Aq(y) is expressed in general case through the hyper-
geometric functions 2F) and 3 F;.
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HYPERSINGULAR INTEGRALS

The above mentioned divergent integrals can be determined in finite part sense-accord-
ing to Hadamard (9) or (which is the same) as a derivative of the principal value of
Cauchy type integral. The latter indicates the possibility to obtain the rule for numeri-
cal integration of the hypersingular integral

W= oo, e (23)

by formal differentiation of the quadrature formula for Cauchy type integral

= e flza) oy 3 (y) d (¢ (y)
I(V)Q’ghm—qf (v)m*-f(u);;(w)]- (24)

Here it is proved (Ioakimidis, 1985) that when f” belongs to the Holder class 4y the
formula (24) uniformly converges in [-1, 12 with the rate of O(n~*). In case the (21) is
used for approximation of f (yg the latter formula can be transformed into the form

~ _fl=) (A} 22" (y) @8)(y ) =
I(y) ~ h}:l v (:‘ — -+ 2P.‘°""(:.))’ @ (y,) = 0. (25)

Now we'll consider formulae (16). If the complex variable z does not belong to the inte-
gration contour, the integrals it containing are regular and are determined in the usual
sense. Hence the usnal Gaussian quadrature formula may be used for their calculation.
But when the point z is near to segment [—1,1] the convergence rate of such formula
essentially decreases. Accounting for this circumstance in case of Cauchy type integral
leads to other formula. The appeared additional term in it presents the main contribu-
tion of the previously neglectetr remainder. The above mentioned is also transferred in
the case of hypersingular integral. The proper quadrature formula has the form

=~ f(z) [ A} 2 ) | aay
I(z) zl§l Py L. —# Pf"”)l(zn)( v gl (z))]- (26)

In this case it can be shown that with point z removed from the contour of integration
the formula (26) coincides with the usual Gaussian approximation.

MECHANICAL QUADRATURES METHOD

The essence of this approach consists in numerical treatment of the integral equations
(16) by application of the corresponding quadrature rules (Nazarchuk, 1989). In this
case the regular terms are approximated iy the Gaussian quadrature formulae. Without
describing the details of the calculation procedures for each case, we'll present only some
results concerning the grounding of this method. In case of the first kind integral equa-
tion with a logarithmical singularity and the periodical desired function the following
theorem is proved (Gabdulhaev, 1986).

Let the next conditions.be fulfilled:

a) functions K, (for each of the arguments) and F.eW’*!' H,(M) =G, where
r >0 is the integer number, 0 <'a <1, M =const > 0;

b) the equation has a unique solution in L, for any right-hand part among
W}y 1< p< oo

c) kernels K .(r,£) are such that operators H-1! . Wp—L,, 1 < p < co are

bounded in the norm in the set. . .

Then the estimation 17 = Jall~n="==lnldd n, ¢g=1-1/p, 1<p < oo is valid.

When the periodic boundary value problem is solved in case of H -polarization, we as-
sume the solution of integrodifferential equation (16) in class X = Lgl) of absolutely
continuous 2x-periodical functions, the first derivatives of which are square-law sum-

marized with the norm llmlngu = |Im|lc + |Im’||z,, exists and is unique one. The space

of square-law summarized at 0,2x] with a usual norm functions will be designated by
Y = Lj. Then the following theorem is proved (Akhmadiev et al.,1988). .
Let be K}, (for both variables), F,eC and the equation has unique solution
in X with any right-hand part from F,€Y. Then at n sach that

a, = const{E](K\)c + E{(K))c} < 1 (27)

the system of algebraic equations obtained by the mechanical quadratures
method has an unique solution and the approximate solutions m,(7) converge
to exact m(r) with the rate

llm —mallx = O{EI(Ki)c + E&(Ki)e + E4(Fi)c}, (28)

where E7(f)c is the best uniform approximation of function f(r) for variable

T by the trigonometric polynomials of the order not higher than n.

As a consequence of this theorem we have:
if K} (for each of the variables uniformly relative to the other of them), FyeH("), then
the approximate solutions m,(7) converge with the rate

lm —m,|lx = O(n=""°), [lm = m.|lcay = O(n™""“Inn), r>0, 0<a 5(1)

29

To formulate the similar result for integrodifferential equation (16) determined along

the open contour, we shall designate w(7)|a=p=1/2 = p(r) = V1 — 72 and introduce the

spaces: L,, - of square-law summarized functions with weight p(r) and with the usual
norm

lwmu=(fdﬂwhth" (30)

as well as L;i,) - of absolutely continuous functions satisfying the condition of m;(s,) = 0
and the first derivatives of which are square-law summarized with weight p(r). Let
X = L(,:,), Y = L,,. Then according to Akhmadiev et al. (1988) the next theorem is
valid:

if F}, and K, (for both variables) € C and the integrodifferential equation in
(lﬂa has an unique solution in X at any right-hand part from Y, then at n

such that
@y = const{n™*/* + E]_ (K)o + E{_,(Kh)c} < 1 (31)

fhe algebraic system of the mechanical quadratures method has an nniq_ue
solution and the approximate solutions m.(7) converge to exact m(r) with
the rate

lIm —mallx = O{n=? + BI_,(Ki)c + E{_,(Ka)c + E{_(F)c} (32)
(approximation is implemented by algebraic polynomials of degree not higher

than n —1). As a consequence of this theorem the solutions convergence in spaces C
and Hy, 0 < 3 < 1/4 is obtained.

597



REALIZATION OF THE METHOD

The systems (10) and (13) describe the waves scattering by cylindrical bodies of an
arbitrary cross-section considered as the superposition of their parts. The respective
algorithms are based on consideration of the cross-section as a set of smooth arcs touch-
ing by their ends. In this case there arises a question on the behaviour of the integral
equation solutions in the contact point. The characteristic part of systems (10) and 83)
analysis has shown that in case of the zigzag contour L the Chebyshev weight function
extracted in solutions with separate allocation of arcs L, should be substituted by the
Jacoby weight and the limiting values of densities m;(s) in this point should be equal
one to another. The character of the solutions behaviour for equations (10) and (13)
at end-points of the L, arcs for piecewise-smooth profile scatterers is changed due to
the terms with stationary singularity in the neighbourhood of zigzag point, extracted in
(16). It was found that i oring of the stationary logarithmic singularity in this case is
allowable and does not egxelct the result obtained. The calculation procedure for solving
the equation (13) is stable only on account of relation (26). The developed procedure
of solving the problem with an arbitrary singularity of functions ju(s) and mj(s) at
the arcs L; end-points allowed to study the influence of its index deviation from the
exact value upon the stability and accuracy of the result obtained. It was proved, for
example, that independently of the zigzag profile shape the extraction of Chebyshev
weight function in case of the E-polarization is quite allowable. In the H-case ignoring
of the finite value of the transversal surface current at the zigzag point leads to error
sensed even in the far field diagrams. With account for this value the transition to
the Chebyshev weight function practically has not effected the obtained results but led
to essential algorithm simplification. Such concept applied sequentially allows, on one
hand, to investigate the diffraction properties of arbitrary cylindrical inclusions more
efficiently, on the other hand - to progress to a more short-wave range.

CONCLUSION

If we use the including environment Green function in the systems of integral equations
describing the diffraction on the above mentioned structures in free space, we shall ob-
tain the respective systems accounting for the availability of the boundaries. Thus,the
performed consideration allows to formulate the universal approach to analysis of the
boundary value problems for Helmholtz equation in the piecewise-homogeneous area
with cuts of arbitrary curvature. This approach promotes the development of rigorous
methods in electromagnetic control theory. As a result it will reduce the conserva-
tion of testing information and to more correct evaluation of the technical state of the
constructive elements.
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