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ABSTRACT

A model for long-term strength of structural materials within
the context of a reliability theory is proposed. For the creep
and damage power laws the mean time of specimen fracture under
constant load and its standard deviation have been estimated.
It is shown that an increase in a fracture time variation coef—
flolent is observed with a decrease of stress in the case of
brittle fracture.The range of stresses is obtained in which ma-
terial hardening during creep does not practically affect this
coefficient.The comparison of theoretical calculations with the
results of experiments on long-term strength of Type X18H10T
corrosion-resistant steel specimens is given.
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INTRODUCTION

Delayed fracture of structural elements is the process of the
microcrack initiation and development under applied load. For
this process description Yu.N.Rabotnov's kinetik theory is ap-
picable involving the parameter corresponding to damage accumu-
lated as one of the state characteristics. One failed so far to
formulate general theory covering main creep fracture effects
and deseribing quantitatively available experimental data with
sufficient accuracy.

In developing the methods of long-term strength computation and
these methods application to real strueture analysis it is ne-
cessary to take into account a rather great time spread in test
data before fracture (Rabotnov, 19693Kachanov, 1974) . The most na—
tural way of describing the scatter is to develop a physically
adequate probability model for fracture and to use statistical
physics methods.
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Thiz way as applied to the problem under consid -
ciated with great dirricu_ltgi]es due tc the cornplgxlggﬂgrésdﬁgg—
rent-gcale Inhomogeneity of solide. In general the possibdliti-
ee of obtalning guantitative lorg-term strength characteristios
for modern englneering materials in thia way are rather limited.

From the polnt of view of spplication statistical methods based

on direct experdmental data on spread and the sim -
1ity models are more effective. 2 ol

PROBLEM FORMULATTON

In the present paper a nresp-fracture model based on the posi-
tions of the reliabllity theory is being developed.

Let us assums that in the specimen fracture under ccnstant losd
a4 Tunctlonal despendence exisis oetween the value £ of areep
deformaticn acoumulated in time t and gpecimen non-fracture
probability at the given inetant 2 .

In the reliability theory an index 1s widely used referred to

a5 "failure rate" which iz related to no-failure operation pro—
babllity (non-fracture probavility) Plt) as fcllgﬁs >

t
P(1) =e:cp[-Jr.1.(z:.:i:} ; (1)

L]

In most cases the fallure-rate funetion L1(%) varies : -
nously in time and possesses an —-2haped fgurm (Bclgtiﬂgag?-
The typical ecurve of 2 creep deformation rate versus time t is
of a simllar nature. The funetion \(t), sccurate to a comstant
can be expeoted to be expressed in the form ]

L) = ¢ Eft) . (2)

n taking into
nitial instant of time we have
P(t) = expl-C e(t)].

The constant o ia determined from  the condition

Substituting -‘2% Inte (1) and acoount that

e(0)=0 at the

: that P =P,
with € = £, whare P, 1z a specimen non-fraocture rrobability 1if
areep deformation reaches the value E, ¢ E, 13 a areep defor-
matiion mean value at fracture moment Fipally, havi Lo

: : : pment. Bi et
non-complicatad transformations we have ' e

P{t) = expl-m e(t)/e,] (3

whers m = -InP, 1s & parameter estimated by the results of ma-
terial teate on creep before fracture.

r1
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Mean time before fracture « t,> and life standard deviation
¢ d » for a rod stretched by constant force under creep condl-
t

-ions are eatimated using the first and the second momeniz of &
distribution

ts = [ ptat (4)
-
T T 8 o5 _
¢ = {2 Jr tP(t)dt - [J pma:] ke (5)
L
o o

- {4089}
to the fracture model ocnszidered Poghlvalow | 3
%ﬁgﬂﬁﬁ%m ot oreep 1s expscted to l;gd 1nd£egta‘gg§ntoager§];ﬁ dﬂﬁt
mage parameter. However,the third pericd oI of : b
:-a.relapra carmot be fully Bx.p%a]r.ﬁ-% only zart;l;e rﬁfﬂgﬁfﬁ 13552?:_1:_
] fonal area. In thisz cass ne MG ave. of
ﬁgtcﬁsaﬁﬁimm important. For tais process li'].EELI“:LEE-.lL?
Rabotnov | 1963) Included the damage W u:l“s g = 1) as a struc
tural parameter inte the equation of eresp.

1 gis the equations of oreep and
el %mmrtai{egr{n the form of an exponential [un-

long-term B i ] exp t
ctrimg;l wher specimen necking in deforming 12 aeocunted for
ce® = oo” exp(ne) (1-8)79, (6)
£e” = a0 erpinel (1-a)
£l % i o . 1;.--:
w=cl erplRe) | ]

i , s
ol By Ny e s 2= material constants 131‘.‘1;11&_ give
E’riza];gérgtﬁm! ¢ ig & nominal stress relsfed 1o the initial
; oo, 1 ;
v - . It is worth noting that in a general case
Eﬁﬂﬁﬁﬁﬁ%g??aaﬁ. E, n, r, g, o are random values the nece}
ssary information of which can be given enly in ttle resgltﬂg_
atatigtioal processing of a great number of Ees; di ,aranahpﬁgwa
mens during creep. Subsequently, under a . ie = W 5 R
undersiand mean vajues of comesPOniE 3 rential equation for
she equation (&) by (7) we gel ifferren AlEY or
I:Minh: rgmz«tinn of W g7 Integrating 1%, when the initial con
dition e(0] = 0 1s accounted for, we have
3 1

) 5 S R
1-g = { v ﬂ!r‘—g‘i"L.' u—in—.u:l {Eumc—':ﬂ—hlf ded r-qei gy
= B J

\ a a i
Subatitutl the expressicn (1) into (4 and (%) sand ccnaide-
ring (6} a:ﬁ (8) yield finally
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’ (9)

x e"ezpl~( n+me:!)el(e)de - (10)
. E‘
r !
- { J e%expl-( nime;')elz(e)de }2 }2
J
where °
£
( -l A-
f(e) - { 1 - n R c? [_ B N 4 . A t2
{ T J erp[-(n-k)elde } s U= R 7:—,
(0]

= (r+1)/(r-g+1), U = R/ (k).

Here, t, and t, are the respective times of ductile and britt-
le fracture defined by the relations

t= 1/(and?) , t,= 1/[c(1+r)ag].

Two versions for the problem solution are possible.

1.Th¢ creep deformation value tends
(8) 1mplie§ that a certain finite dto
corresponding to breaking moment

infinity. The equality
amage value exists @ = 0,

o

c(r-qg+1)
a

i

r N
[eteapt-tn-pc1ac } 7ot
]

f
0= 1 - {1 - g (n=i)
\ (o}

) 3 O
If « are integers the integral can be calculated in the follo-

wing way
1
o,=1- 1. _a  17m
V(n-&)° ]
In this case the relations (9) and (10) take the form
[44]
< t.s = nt [ &
> = 1J € exp(-ne)f(e)de , <0>=0. (11)
o
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2.The fracture condition @ = 1, as follows from (8), is reached
with a certain finite creep deformation value € = €, which is
defined by the relation

acn—k *

m = JIre"‘t=.=a:p[-(n—1a)rs]de (12)

i )
From the equation (12) we find creep deformation at breaking
moment €, and then from (9) and (10) - a mean time before frac-

ture < t,> and its standard deviation « 0,>. From the relation
(12) with integers a it is not difficult to obtain the condi-

tion of brittle fracture "

¢ < [elrgat 1 °7% _ o)
0 L a(n_k)(rfl J (o]

Let us consider the case when material hardening does not take
place during creep ( a = 0 ) '

In the fist version with 00>oé (v > 1) from (11) we have a de-

terminate solution, obtained by Rabotnov(1969). In the second
version, taking into account (12) , we otain the solution from
(9) and (10) with T < Oé (b < 1) in the form

1
; -
: t'i> S (10 4 goyhemin” (120 photge (13)
-
1 1
i A
e =1 {2] [ | (10 sco)ker-ta Jct-v +
2 L JtJ
o T
1
-1 rT
s gpybemin T n g { | (1-v + (14)
J
0

1
2|2

+cu)ﬂ-m1n_1¢1-v) Cl-idc] }

The integrals in the right-hand sides of equality (13) are ex-
pressed through hypergeometric functions.

For small v 's from the relations (13) and (14) we get approxi-
mately

< t'> i 1 _ [u = M ln-1(1~l))] )] (15)

t, A+ 1 4
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e 0 e —1
e o SumoinT (1) f 21+ —f
—_—t = 1~ e . 2
r— /- R {2 em o)) L c6)

Rakotnov'=a (1969) scluticn follows foom

rameter @ ( g = 0) then the relatioms (13) and (14) are

tegrated in quadraiures T
e Tow
* o Inr o
S o [yl e e I (17)

1
f{lr_} r r
t, _iE[ Int - m

= (1 — e ™™z} -
1

lnz - 2 1
~ BT = O 331} - L (1 - e"r}3}3t153

where
z = [1-t /(e m1" n=p+.

NUMERTCAT RESULTS

The numerical analyais of areep fracture to be used here is ba-
ged on the selutions (13),(14) and (17),(18]. i

Fig.1.Diagrama of the long-term strength.

Flg.1 shows a long-term strengih curve 1 by Kachancov's (1974)
aolutiaon Ell’fld. ourve 2 - by a revised solution (17). The E.tr'_a;;‘if‘j
lines t,= t, and f,= f oharacterize pure ductile and pure brit-
tle frapiure.

durve 2 lies benteath curve 1 ; fransition to pare duetil A
ture occouring simultanecusly. o IHeRIBGLIR Tea

Curve 2 in logarithmic ecoordinates has an ineli

the equation of which ia defined in the form ikl
RN -
t .= fa- et

Fig.2 ghows the dependence of time fracture vardation coeffici-

ent U =< 0 >/¢ t,> on the parameter = (n-E)**'ale(rs1)n! ]a;"‘

] e (13)-(18) at m=0.
If the equation of creep (6) is indepemdent of the damage pa—

A — 5 e

atm= 0.5 apd q¢ = 0 for diffsrent values of the constant n .
Here, the solid lines correspond %o a = O, dashed lines - to
a1 = 1, dot-and-dash ones-to a = 2.

)
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Fig.2.0raphs of time {racture variation
coefficients Lbt veraus stress ':JD.

It ig seen from the pioture that there is an increass in spread
of experimental data with a decrease 1n airess in the case of
brittle fracture. In addition, judging by the resuits of palou-
lation acacunting for material hardening during creep doee not
prastically influence the walue of a fracture time wvariation
acpefficlent v, for 5 = 0.1. LN is a monotonically decreasing

fumotlion and in tnis case has two finite limits

lim l.rt =
o+ 0

|
£ fetma 0TS

=)

L] a =

1-8

B

2.2
] @ =1

. [5-8™™(m42) (mP4mt2}-e” 2" (m+1)
1 - e " {m1)

1

C =

[76-2/38"™ (m5+5m* :20m” 454m> + 108m4 108) -2~ 2™ (m*+2m+2) |*
2 - e " (mP4em+2)

o= 2

4 comparison of theoretleal caloulations with the results of
szperiments on long-term strength of Type Y1EE10T corrosion—
registant steel specimens at temperature 123K [ Lokoshohenko at
al.,1979) 1s made. The material ponatants are evaluated =after
corresponding experimental resulte procesaing on  oreep and
long-term strength



a = 0.63 x 107® Mpa~2-2/y i n=3.2;9=0.7; «a =0
¢ =0.58 x 1077 MPa~ 123y , - 3.125 1 = 1563 m = 0.4 .

Table 1.Theoretical results and experiment.

N GO,MPa t,.h Ot,h < t,>,h < 0t>,h
10 40 51.3 14.5 52.3 16.1

11 50 21.8 5.1 26.0 8.0

6 60 15.4 5.0 14.7 4.5

2 80 6.0 0 6.0 1.8

The Table 1 DPresents measured (the third and the forth columns)
and calculated (the fifth and the sixth colums) values of spe-
c¢imen fracture time and their standard deviationg evaluated
from (13) and (14). Here, the number of specimens N tested at
different stress levels are also indicated.

The integrals in the right-hand sides of the equlities of (13)
and (14) are determined by numerical methods.It is directly se-
en from the Table that the theoretical results obtained are in
a satisfactory agreement with experimental results both by fra-
cture time and its standard deviation.
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