A NUMERICAL METHOD FOR MODELLING CREEP
CRACK PROPAGATION BY DIFFUSIVE VOID
GROWTH

MN.P.WITTS
Dept. of Engineening, Leicester University,
University Road, Leicester, LET 7RAH, UK

ACF. COCKS

Dapt, of Engineering, Cambridge University,
Trumpington Street, Cambridge, CE2 1FZ, UK

ABSTRACT

This paper describes a numernical method which kas been developed tn mode] the growth of 2 macooscopic crack
in & non-lincar viscous matesial. The material surounding the damage zooe which forms ahead of the crack is
modelled using an incompressible. non-linear viscous, plane sirain finite element formulation. Sieady-state crack
growth is incorporated into the formulabion by assuming that the growth is controlled by boundary-diffnsion void
growth in the damage zane. Crack velocities are obtained for eracks growing ina C*-imegral fickd. The resulting
compuiEtions are in agreement with simple analvtical models of Fully constrained and unconstrained voiud grovath,
and provide @ mears of inkerpolating berwesn thess sxtreme sinations,
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INTRODUCTION

The mtegrity of power-generating plant operating a0 high emperatures s poweatally threatened by excessive
creep deformations of components, and by the propagation of dominant, macroscopic cracks. The phenomenon
of high =mperature crack gmowth has been exiensively studied both experimentally and theorencally, and has
been reviewsd by Riedel (1987) and Saxens (1991].

Cracs frequently grow by the nucleation, growih and coalesence of grain-boundary microveids in a damage zone
ahead of the crack tip. Cocks and Ashby (1982a) have shown that the growth of these woids may be comrolled
by boundary diffusion, surface diffusion, power-law creep, or by a3 combination of these mechanisms.

Thearetical models have been developed by Cocks and Ashby (1982h) and Risdel (1980) which describe the
growth of cracks by voud growth, Both assume that the growth is accompanied by extensive creep of the
componend, when the pear-tp stress and strain-rate fiedds are characterzed by the C*-integral, Landes and Begley
{1%76). C* iz analogous o the J-intsgral of post-vield fractore mechanics, Hulchinson (1968) & Rice and
Rosengren (1963); and has been found w correlate with creep erack growth rakes for exiensive oreep conditions.

Finite element (FE) analysis has been used 1o study a number of different aspects, Needleman and Rice (19801
analyzed the growth of grain boundary woids, shile Tvergaard (1985 alao included the effects of grain boundary
sliding. Crack-tip stress and strain rae fields have been compared with the comresponding analyteal HRR fields
by Baszani and MoClintock (1981} and Li 20 al {1988a). Finally, fransient creep crack growth rates have been
obained by FE analysis: for example, Hawk and Bassani (1986), Li ez al {1988b) and Wang et al (1991).
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This paper uses FE analysis to model the steady-state propagation of a crack by boundary-diffusion void growth.
Extensive creep is assumed, with the crack and damage zone enclosed in a C* field.

GOVERNING EQUATIONS

Non-Li Vi

For a non-linear viscous material undergoing small, plane strain deformations the principle of virtual work may
be written as (Needleman and Shih, 1978):

f‘oudA - frTiuids =0 (1)

where o, and &, are the stress and strain rate tensors ,T, denotes the tractions, and 4, are the displacement
rates throughout the material in region A, with boundary .

The constitutive relationship we employ for power-law creep is:
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where g, is the von Mises effective stress, s are the deviatoric stresses, v is Poisson’s ratio, and &, o, and
n are material parameters. When v=0.5 eqn.(2) reduces to the standard expression for poxyer-law .cree;? of an
incompressible material. In the present paper incompressibility has been approximated by using a Poisson’s ratio
of 0.4999. This allows the displacement finite element method to be used.

Damage Zone

The situation to be modelled is illustrated in Fig.1, where a crack with a damage zone is introduced into a
creeping body. The damage zone comprises a length, 5 of grain boundary co-linear with the crack. Along the
grain boundary a series of spherical microvoids exists, with a radius r, and spacing 21.

We will consider the extension of the crack by the growth and coalesence of the voids by grain-boundary
diffusion. The volumetric growth rate of the voids by boundary diffusion is given by Cocks and Ashby (1982a)
as:

4nQD,3,
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where Q is the atomic volume, D, the grain-boundary diffusion coefficient, 8, the grain-boundary thickness, k
is Boltzmann’s constant, T is temperature, f, is the area fraction of the voids (=r/1%), and G, is the stress normal
to the damage zone.

Eqn.(3) can be expressed in terms of the displacement rate normal to the grain boundary as:
GQD.G.G

4 = Doy = r "
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s 1, 18 the initial value of f,.

If asention 18 confined to situations where the crack and damage zone form a line of symmetry in the body, then
he virtual work principle in egn.(1) becomes:

[t - [Tas + 2fsiogs =0 ®

= here ¥ represents the boundary of the damage zone.
ok Urowth

e crack shown in Fig.2 is assumed to propagate with steady state velocity 4 . The normal displacement rate
wighout the damage zone in the y-direction is given by:

u(x) = % :li(x')dt ©

At the crack tip the displacement may be equated to the critical crack tip opening displacement u,, which we
1ake 10 be a property of the material:

u, = w0) = 2 itxde V)

wearranging cqn.(7) gives the crack velocity, which may be substituted into eqn.(6) to yield:

ux) = u, [ uxdy [ Ve e ®

FINITE ELEMENT FORMULATION

numpressibility

1 var noded isoparametric, quadrilateral elements have been used to implement egn.(5) into a finite element
« heme. Apart from the numerichl problems associated with modelling incompressible material in plane strain,
ihis implementation is a standard application of the displacement FE method, see for example Hughes (1987).
As the incompressible limit, with a Poisson’s ratio of 0.5, is approached, elements of the type used become
useptible to mesh locking. That is the mesh becomes over-constrained as a result of the imposed
wompressibility conditions. There are a number of recognised solutions to this problem, normally categorized
+» cither mixed or penalty methods, and reviewed by Hughes (1987).

Mired methods involve the introduction of an additional unknown, the hydrostatic pressure p. The incompressible
ceatraint p plays the role of a Lagrange multiplier in the system of FE equations.

i"enalty methods, one of which will be used here, allow for slight compressibility with v approaching 0.5, Hughes
1447). In order w0 climinate mesh locking however, reduced or selective integration procedures are necessary.

In v case we have used selective integration, with four Gauss points for the deviatoric terms, and a single
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Gauss pomt for the volumetric torms, Then 2qnu(7) may be wrillen &
[T (BIDIBD, (8} - (TY{d} + (&)Tkliét =0 ()

where (D] is oiuained from eqn.(2), o denotes the Gauss points, and [B] is a modification of the strin
displacersent matrix [B] w imqlement selective mlegration, Hughes {1530},

T‘h:nu:i:!‘k.,j':ufl.n:ﬁmuftlw.vuidsi.mmd!mchgw:ﬁnm:h:um:m.Fm'apnﬁ:ribcddm:hnim
of damag the set of non-lincar squations represented by egn.(5) can be solved directly 1 yiedd the instantaneous
&'qﬂmmu‘.d\mi.dpnwlhruus.lnlhcmﬂnmmﬁmwcpumlicﬁccmmeufnmmm
mmu&mmmmm&mmmmmmﬁmnﬂumﬁm
solubon process.

Crck Growih

In Fig.3 fimite elements numbered from | to N form the damaged grain boundary abong the element sides with
nodes nambered from 1 to n Node 1 is simated ol the crack tip. The sccond imntegmal of eqn.®) is then given

by: ¥
[t = a2 + T3, ) (10

where i, are the nodal displacement rars normal w the damage zone. and ) the clement lengths.

At the exmeme right-hend end of the damage zons i_-u.B:anshilrtrum:nIﬂuﬁmiltynlm
displacement at the ith node beocomes

w = w2 T d) 2T ) an

Sntﬂ.i.u:'l:-ln!u.i:incqn.{4}riehfcsﬂ:ﬁmﬁmb{u}atcadmfﬂxmduinhdaman:mud&mﬁix
(kg of eqn.(9). These can be weated as nodal siffeesses o beappended w0 the eaisting elemenit stiffness matrices
for elements 1 1o M. Further details may be found in Wit (1992),

Soluiion of Equas

Dnasm-ﬁrﬁ[hmuﬂlﬂﬁﬂsnm&mdueknmﬂﬁmummicﬂmdﬂccmmnfqnilh.
mm;mJiuquﬁmshhﬁhmnﬂmwwiﬂnﬁuNcm-RmmMmsmHmM
example of Shih and Needleman (1984). Additionally, in order to obiin comvergent sclutions for values of oreep
wul,mumuhﬂbmnmmmﬂumhﬁmﬁ:mlmmmgmw
conditions for ne2, aad so forth 1o larger values of n. The computed displacement rale feld can then be wed
w&m&ﬂ%hmm.m.NMMMﬂdﬂuﬁmmmmdrmgh
eqn. (6).

FINITE ELEMENT MODELLIMNG
The FE model used to obtain the resulls in the following section is illustrated in Fig 4. 1L consists of 136 4-noded
clemenrs, with a maximum of 3 clements adjacent io the damage zone, The eadivs of the semi-circular houndary
is approximately 10 times the damage zone length.

Tractions have been specificd around the semi-circular boundary in order o impose a C® fleld on the region
analysed. The mactions wers computed from the equation given by Riedel (1987

oy = [CBA"08, (12)

where |, and 3, arc given by Riedel {1987), r = radins and B = éfoq .

< m the lower boundary, nodes not in the damage zone, and nid oa the crack face, were restrained in the y-

{iw Tk,

WODEL PREDICTIONS & COMPARISON WITH OTHER 3TUDIES

Ioitial computations hive been performed for a range of C* valnes, over a wide range of &, Coclo and Ashby
1M da) defined the material property ¢ as:

0,8,0 o,

MY §, o

-h-hulmdﬁamﬂ:amtﬁmmﬁﬂdmmmmﬂmmmnwmﬁﬁm
omrg uhmq:latasuaa.b]gmlrdmmmsu,ﬁmmhismum:mmufgnh-mmdﬁm
+ sluggish compared to power-kaw creep and the kst werm of eqn(%) can be neglected whea determining: the
wess eld in the body. Conversely when g, is large the maie of grain-boundary diffusion is much faster than
javwer Law creeq, 2nd deformation within the damage tone & completely constmined by the sufrounding power-
e creong material

spenmental and theoretical studies of cack growth-rate in the limit where C* detgrmines the remote stress and
lisplucement-raie Tislds suggest 8 crack growih-rate law of the fomm:

a = (C7" (14)

slwre 1 1% & material property. Riedel (1980) assmed thal Us siress ficld is anaffecied by the preseace of the
lamage and predicted m = 1An+1). Cocks and Ashbry (1982h), Thouless (1958) & De Voy and Cocks (1992)
wswmed that the damage zone is fully constrained, and obamned 2w with the form of eqn.(14) with m =

R N

I he rmmufamufmpqaﬂﬂum:wichmpdtuﬂmmmmihFlp.Sl'ldﬁ-,ch'du-ZS

e 4, = 0002 fs, 0= 3.0, =002, 1= 001 mm, u= 0005 mm asd § = 0.076 mm. Foe 8 given valos of
+, i rsmits cormespond with eqn.{14). When ¢, is small m = 1i{n=1}, and when it i large m = 1), in
< grement wmmmmmmmﬁm.WWMMMm

wewislinns cours over a wide range of 4y, with m meressing from 1An+1) © 00+ 1) as 4, is mcreased from
vt U

w the umconstraimed limit the teoretoal models predict the following relationship begwsen crack velocity and

lamage AoNE SRS
d=8 (15
where o= nfine 1), This result is confirmed by the pressar work, as shawn in Fig.6.

e resailts of this preliminary study serve o vatidase the numerical procedures described in the papez, while also
tennilying the range of applicability of the simple analytcal models.
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CONCLUDING REMARKS

In the case where void growth is controlled by grain-boundary diffusion, and the crack grows in a C* field, two
regimes of creep crack growth have been confirmed. One, when void growth is unconstrained, occurs at low
diffusion rates, and the crack velocity varies with C* to the index 1/(n+1). The other regime occurs at higher
diffusion rates, and the crack velocity varies with C* to the index n/(n+1). Here void growth is constrained by
the surrounding creeping material. A transition region has been observed in which the index of C* changes
between these extreme values.

The modelling described in this paper has been confined to situations where the damage growth is controlled
by grain-boundary diffusion. The techniques described here can, however, be readily extended to include other
mechanisms of damage growth within the damage zone.
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Fig.1: Crack tip with damage zone of size delta.
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Fig.3: Finite elements ond nodes adjacent to the
domage zone.
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