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ABSTRACT

This paper addresses the fracture resistance mechanism in fiber reinforced ceramics, and
focuses attention on the specific effects associated with the nonlinear nature of the fiber
pullout mechanism. The model is based on a consideration of the representative
boundary value problem typical for the bridging process. The theoretical solution
includes an accurate account of the nonlinear fiber matrix friction. An explicit
incorporation into the analysis of a discrete fiber distribution and formulation of an exact
solution to the corresponding problem are distinct features of this model. The developed
approach allows consideration of several types of nonlinear fiber pullout - force
dependence. The distinct features of the nonlinear process demonstrate that, contrary to
the linear case, the universal fracture resistance curves cannot be developed in cases with
significant nonlinear contribution in the fiber friction law. The resulting resistance
curves strongly depend on the absolute values of the matrix fracture toughness. On the
other hand, these distinct patterns may be used for identification of the particular
friction law and determination of the friction parameters.
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INTRODUCTION

A significant technological effort is devoted to development of ceramic-based
compositions, such that the high temperature performance qualities of ceramics will be
preserved, and the undesirable brittleness will be reduced. In relation to this, several
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models have been introduced in the literatore, A literature survey, along with a
complete description of the mechanical processes taking place and the main efforts in
modeling these processes, are given by Aveston, Cooper and Eelly {1971}, Rase (1987).
The common feature in the development af the models {Budianzkv, Hutchinson and
Evans (1986}, Budiansky and Amazigo (1988 and, 1989), Nemat-Nasser and Hori (1987))
is a substitution of the action of discrete fibers by a distribution of forces which,
supposedly, produces a similar toughening effect, Usually, the analvsis of the model is
based on formulation and numerical solution of a singular integral cguation which
reflects the force-displacement relation in the process zone. The analytical approach
presented in this study departs from this well-gstablished fracture mechanics scheme.
The analysis cutlined below is based on the consideration of a two dimensional model
which captures the main features af the fiber reinforcement process. The subject of the
analysis is microprocesses occurring within the process mone formed ahead of 2 growing
crack, and, therefore, the small scale framewark is used, The two dimensional
farmulation is chosen ta represent a plane perpendicular to the crack front which passes
through the array of reinforcing fibers, The load is sssumed 0 be aligned with the finars,

and the analysis is concentrated on a crack growing in transverse direction to the finers,

The crack growth resistance mechanism in this material is based on farmation of the

bridging zone, the process zone in this case, where the cracked matrix is held by the

remaining intact fibers behind the erack front. Thus, the high intensity stress fizld typical

for the vicinity of the crack tip is distributed amaong these hridging fibers and the leading

crack tip arrested by the matrix, The energy relesse rate associazed with the crack growth

under the deseribed conditions cansists of two parts: the energy absorption rats due to

the friction on the fiber-matrix interface associated with the crack advance, and the

energy release rate due 1o the erack advance within the matrix,

The fracture resistance R of the composite may be represented as an applied load
required to maintain the crack growth as a furction of the crack advancement From the
instant prior to formation of the bridging zone. ‘Thus, assuming that for the crack
advancement the leading stress intensity factor acting on the matrix K7 has to be
maintained at the critical value for the matrix Kjc, the material resistance can be
represented as

Km
Lol At 2

g

R =K

The ratio K_ /K (dimensionless fracture resistance) characterizes here the fiber
reinforcement effect, that is, a relative reduction of the local. leading, stress inlensity
fiactar as compared with the stress intensity factor on the macroscale,

The model described here is hased on the following assumptions: The elastic properties
of the fihers are assumed to be very similar to the properties of the matrix with no
significant difference in values of elastic constants, The differsnce between the strain
magnitude in the fiber and in the matrix is insignificant a a finite distance from the crack
surface, |v| = (. The local dehonding at the fiber-matrix interface does not influcnce to
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: significant degree the resulting stress fizld at locations mﬂT;.uLe fdm-rTn m :-n,;::;:;cm
s is analysi ding is allowed. i :

T ses of this analysis, o debonding . s 3 2
[heiizg?é;ip:n]zunay af microcracks berween the fibers with musfits on the ligame
repre

ik I to the amount of the fiber pull-aut. The profile of the mmr:::h ml];-a;:::::
i d'ﬁufﬂ?lzn«:rs has 10 retain axial symmetry, and, thus, the Il‘ﬂl-ﬂﬁt al each | gmde
ki midi-n oA flh;.-r has 10 have a constamt value along that hgamfl:ru. Thxlalmig_ fioce
E?Tipgﬁfit in each ligament is different and i comtralled by the fiber pullow

relationship.

ANALYSIS

incipal i ters associated
ith the processes taking place during the b(tdf_,mg zone P st i
o rack, The crack size is assumed 1o he significantly larger than t E.{ i
bt d fore. the small scale approach may be used. In ll?e trar_:sewclrk e IE
5.221' ?:d;l:: e Iin-:,d. l:;ad is represented through the Temole stln?is intensity IEactok;I#a;ca
= vll: th :ﬁfﬂ stress fizld of the process zone, The fiber thllc_-;ns;s. here 1s1r1a : ﬁm;
bt 1c f fiber <. ing p, and in case of the first microcrack formation atter U T ;
tt!: PEf;mlcﬂ :Ih :.f .*‘I::.Trd::u}:mck i b-a. The methodology of the analysis was dFve‘;;:E
E;{Eﬁ::ﬁ.:qtenii {WHS, 1587) and Rubinstein and Xu { 1990). The basic r:'ln:mz:zh;ﬂsm 1.;.:,-33
lin=ar plane theory of elasticity in terms of !k_;e complex mtgnt;a!a ¢“aem;:m T
nere using standard notations, Muskhelishvili {1._'3}?5}. Limiting {:ml'jla R e
I lnnd{ng <0 the direction of applied tension is parallel to the dirce

symmetry condition on y= (b can be stated as

z ’ (21
o {z=x} =0 = Im{ze~(E) + & (Z]].
12
i 1 y and, therefore, they
i a ar alyti the plane with euts along y =0, and, .
Funections 4 and ¢ are analytic in ; ; g 0>
may be considered s analytic in the upper half E-iune. U:;m_g ou::il];ar: (2} athe :np;!w;dgc
the principle of snalytical continuation, ane ablains the relanonship between
potentials, which is true up 103 rezl constant,

(3]
pole} = = z¢~ (B}

Il— id f .'_I. rar —=l WL'I‘ITEL&"DE‘- {3}|
5 s ine 3 LIS JhE."ﬂ ln\ﬂnls-haﬁz 2 1
=3 nsiant 12 dI'ULJ]‘JE.I:i SIMCE h':."ll.". 5udaes U_ W
[l_‘E- Cm] reis.l: 15 [14) II & OrmA 1 siress und lilb'[_ﬂill:.“]llc 14 ﬂ:n'PULE'lE ﬂl.U B IFXL bew na
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= E= 4 1_| A= = Im‘x]- t“'
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& has Lo be determined, and the boundary conditions

The condition at infinity states that function ¢
in terms of a remole Siress

Thus, only ane analytic function
' itten i ns of this function,
can be written in tecms of L 1 _ I
has to match the applied stress field, which s_.'::-::-uld he given
intensity factor Ko (we consider Mode 1 loading anly),
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(5)
2|2wz

Reo¢ " (x)=0 on x < 0 and a+pk < x < P(k+1)

(6)
Im¢ * (x)=0 on pk <. x < atpk and pN < x

k=0,1,2,...,N-1.

’

The physically suitable analytical function which satisfies all

conditions stated above is
chosen by Rubinstein and Xu (1990) as

N-1
M (z-d,)
K_ L

¢ (2) =

N-1 , . (7)
227z N (z-a—pk)i(z-p(k+1))§
k=0

The branch of the square root function is chosen with the condition that for z=x>pN
the result of the square root is real and positive. N real constants dy have to be
determined from the conditions on the fibers, Assuming that the constants dy are found,

the stress intensity factors are determined by taking the appropriate limits; for the
leading microcrack tips the results are

N-1
kno(Pj‘dk)
3= K — N-T - ; (=)
P3(p-a) 1 (j-k+1)"(p(j-k)-a)
k=0,k=j+1

j=1,2,...,N

Case j=N determines the stress intensity factor at the leading end of the bridging zone,
the value acting on the uncracked matri

given by Rubinstein and Xu (1990).
The bridging zone initiation may be analyzed by taking N'=1; the final expressions for
the stress intensity factors acting at the main crack Ko, at the leading tip of the
microcrack crack Kp, and at the trailing tip of the microcrack K, are

K°= le , Ka= K, d - a , Kb= KQM . (9)
[ab Ia(b-ai b(b-a)

The constants dy correspond to locations of maximal crack opening of each microcrack.

As mentioned above, the necessary set of equations for detfrtr'nina}tli‘ono(;f tt}lll::sfei bc::st%llt:

i icti i llout - force relationship 3
should be given by the friction or fiber pu ; : e
i i he cumulative displacement
displacement Bj, on a fiber k consists of the cu ' :
Ekl;::l;)(;l t)f lfsilP;er k plus a II;liSfit at the microcrack immediately in f.ront_ of it AB";:?:) f(’)I{;:
Fj, acting on a fiber k is determined from the given stress.dxstnbunon (7)1w1 ders't o
frlicction law relating the fiber pullout to the ac.ting force is not completely un i
The general form of this relationship may be written as

(10)
M(F)- £) = B;, k=0,1,2,...,N-1.

Here f is a threshold force, and a is a parameter determining thesgxc:l\zgr a:; t=hla
relationship and X is a constant. Most gomrponly these pa_rarneters are a:’ e
and @ = 1 (linear relationship), to mmphfy the.analyms. Tw:) lcases

below; linear relationship and parabolic relationship,f = 0, = %.

The energy absorbed by the fiber pull-out process due to the bridging zorfl% ex;;:nnlflon,
Gy, can be evaluated by employing Rice J-integral. Thus, in the case of one fiber

" 2 2 2 2 (11)
K - K, + K =K =G+ K
or 2
2 ? _ g’ 2pd -d-ba (12)
G~ K, =R =K, —5m-a

The energy absorbed by the fiber pull-out process will produce a positive contribution if

13)
b>d>b - [b(b-a). :

; _ ber
The negative contribution is physically possible llaecfause %i 'the‘ r;slterlz::;l;s;no?lt)he
i ich is implici in the formulation. is sim
bending which is implicitly assumed in 1 s of the
energygrelationships cannot be used for the general case 1_nasmuch as disn
independent parameter; it depends on a friction law and a/b ratio.

LINEAR FORCE - PULL-OUT DISPLACEMENT RELATIONSHIP.
The linear case solution was obtained by Rubinstein and Xu (1990) in closed form for

the case N=1 and numerically for an increasing bridging zone up to N=18. The
nondimensional friction coefficient is introduced as

(14)
A= 2——}‘1 .

The constant d, for the case N=1, is
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K[l pE E] R n.ng] (15)

Kfm) and E{m) are complete elliptic integrals of the first and second kind Th
H1=1 characterizes the hridging zone initiation process. Dring the devela ;ncutf:lfc?;:e
micrncrack the ﬁt_r:r not only restrains the separation of the martrix hut a?‘.mF;estraIns ﬂ-1c
s;hape of the marrix at _I!he ﬁt?er - matrix interface; namely, it restrains the rotation of Lhia
ligament. The three dimensional surface corresponding to these data demonstrates ih z
Fhe’ relan-_.re.lg.r small microcrack, with respect to a fiber thickness, is unlikely to exist f .
1r_:l¢r1:f11:d1ar-:. nom-zera, values of &, The small micrcrack will TEpresent an un:mb?r
situation. The fm_er spacing in the matrix becames an important factor for apti z:l:
_remfo reement. This fipﬁl:ing has to accommaodate this unstable microcrack é;mmh 1:;:;1'::1'&
it rcn:h:sl the next fiber; otherwise, this unstable matrix failure will extend through th
array of fihers. There exists an optimal cambination of the fiber -spacing ratio ai:.l I:hc
fiber pull-out parameter A when values of the leading stress intensity factor are mini e
and thus the material resistance is maximal. The equation (11) suggests that the npt?nf:qar;

reinforcement will take place when K, = 0, A spacial =K =
place atab=05,a=10,K;=0. B N D N

The nattunﬂ expectation is that with elongation of the bridging zone, the load on the fib
separating lh'e, bridging zone from the main crack (first fiher) wil.l inerease. The fi t:
fiber is experiencing the maximal load in the arrav, but this load. in m{;ﬁt <:asa.=:‘=.1rzi
reached after development of a few microcracks, Thus, long hr.idging zones iy
develop, and a primary limitation on this length is the leading stress intensity fau:nt-::i‘:-:"r
which zcts on the uncracked matrix, and the lengih of the fiber avai'iablé to be pulled 0ut1
The resistance curves obtained on the basis of the describad analysis show a significamt
sp:egd of resistance values over the given values of & and dependence on the fibe
spacing aspect ratio. The high values of & allow significant ratrix separaton in 1hr|:
bridging zone, and that contributes to the load redistribution, which causes higher val

of the leading stress intensity factor; i. e, lower fracture resistance, These d:w s: o
the conclusion I'rf.‘rl'ﬂ 1:]13 exact solution describing the bridging zone v.'.mtiation that :JEE:“
an aprmrai combination af the fiber spocing ratio and the _ﬁ'bcr pull-out parameter at whi I;
the maximal fracture resistance may be gehieved, H

NONLINEAR FORCE - PULL-OUT DISPLACEMENT RELATIONSHIP,

The r:]unlhntar case br_ings several interesting aspects into the process which may recuire
redesigning the experimental procedure for composite evaluations. Therefore. 1o obtai

a better understanding of the nonlinear phenamenon, anly the one fiber I_";'lk cas :
analyzed here. The method of solution of the prablem can be easily applied to :r-:.-

rational power of the force - pull-out displacement. After setting o =0.5 and f=0in

jez

o e el e

ik i e . S il e, i, s s 151

equation {100, taking the squzre of both sides, znd substituting the following expressions
far the force and displacement, which zre obtained by integration of the stress function
{73, the quadratic equation for the ratio ik is ablained. Ar important aspect of the
abtained result has to be pointed out. In addition te the dimensionless friction 4 given
tw (14}, which includes the interface property 3 and material constants g and v, the
nonlinear case includes the loading parametar

E_(x+1)
K'= —u_E (1e)

Thus, comtrary 1o the linear casc the composite resstance curve pattern depends on the
matrix toughness in addition to the fiber spacing aipect ratic and fiber-matrix nterface
friction. The dimensionless resistance parameter hased on the ratio K. /Ky cannot be
used for the nonlinear case. It is clear from the derivation, that this is 1 general property
for any nonlinear case. On the other hand, one mn use the experimental resistance
curve obrained for this simple geometry as data for the inverse problem, and, thus, the
friction law can be accurately determined. The final equation for dib is

A (d/b)7+ A_(d/b) + A =0 (17)
A =K' (a/b), A = 2K(a/b)+E{1-a/b) /n K (asb)?

A ==E(1-a/b)/n K" (a/b) '+ [B(a/B) -K(asb) )"

The equation (17) has two real rocts one of which corresponds (o the position of the
maximal microcrack opening. The loading curves associzted with development of the
microcrack were abtained for different & and Jimensionless martrix toughness
Kynle + 13(a22 )5/, The interesting feature of this nonlinear case is that the compasite
formed with the matrix with lower toughness has a higher resulting toughness
enhancement. The nonlinearity of the force-displacement relation {10) is & significant
factor in terms of the composite toughening. The finer spacing is more critical for the
optimal toughness than in the linear case. The region of matrix weakening due to the
fiher inflexibility is abserved here as well as in the linear case; however, the region and
intensity of this effect are different. The region and intensity of unstable matrix cracking
are increased significantly as compared with the linear case,

CONCLUSIONS
The micromechanical toughening mode! for the fiher reinforcement of hrittle matrix was
presented, The analysis of the model is based on diserete fiber distribution and addresses
such important aspects as fiber spacing ratio and fiber flexibility.
Two types of the fiber pull-out cisplacement - force laws were considered. Exactclosed

form solutions are given for the bridging zone inidation in the ¢ases of the lincar and
square rool force - displacement relationships,
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In the case of the nonlinear force-displacement relationship, the experiments conducted
on a laboratory composite cannot be directly transferred to other types of composites.
The patterns of the resistance curves strongly depend on the friction parameter and the
matrix toughness. To be reliable, these experiments must be carefully designed.
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