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ABSTRACT

The microcrack growth behavior in dissimilar media is investigated with an aim at estimating service life of
advanced ceramic composites under creep-rupture conditions. The crack is assumed to grow along an interface
normal to a remote applied tensile stress via a coupled surface and grain-boundary diffusion under steady-state
creep conditions. The tensile stress distribution along the interface shead of the moving crack tip is solved,
and it is found that a new length parameter exists as a scaling factor for which the solution becomes identical
to the single-phase media when plotted on the nondimensional physical plane. In contrast to the elastic stress
solution which shows singularity at the tip and oscillatory character away from the tip, the creep stresses have
a peak value away from the tip due to a wedging effect and interfacial sliding eliminates stress oscillation
resulting in & decoupling between mode I and mode II stress fields. This solution ties the far-field loading
parameter to the crack-tip conditions in terms of the unknown crack velocity to give a specific V-K;
relationship. It is shown that an exponent of 12 in the conventional crack growth power law emerges at higher
applied stresses.
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NOMENCLATURE
D,, D, grain-boundary, surface diffusivity x nondimensional X (=X/L)
E Young’s modulus Kep surface curvature adjacent to the crack tip
Jie matter flux at the crack tip v Poisson’s ratio
K, K; mode I stress intensity factor a materials parameter describing a,’
Kg stress intensity for Griffith cracks B Dundur’s parameter
Ka threshold stress intensity A bimaterials elastic constant
k nondimensional K (=K/Kg) I shear modulus
kT thermal energy per atom 3 clastic constant
L characteristic length along the interface Y 7, boundary, surface free energy
4 reference length for the crack thickness 8,, 8, zone width for g.b. and surface diffusion
v steady-state crack-tip velocity Q atomic volume
Yaia minimum V g normal stress (=0,,)
v nondimensional V (= V/V_) a, crack-tip stress (i.e. o, or o(x=0))
X Cartesian coordinate along the interface b Burger’s vector
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INTRODUCTION

The prescnt paper is concerned with the hﬂ;mﬂihhﬁ‘hwinmutﬂﬁﬂubcﬂmtwdinimﬂum
subjected to hmmmm;mmummw. o recent years, sdvanced cerarmic
composites rembforced with cormmic fibers have attracted considersble interest hecause of thetr potential
advantages over conventional rmterials m high-temperature, load-bearing spplicstions. Those adventages
anlndnmhmmdmmgmmdtuu.hmmdhighmsjmmaumsimmdminmm service
cavimament. Yet, their reliability under long-lerm sustained boading conditions remaing to be quanitatively
establizhed so that Lifetimes can be estimated 1o mssure religble service and svoid premature failure.
Experimental observations of the microstracture of the creep-ruptured specimens indicate that the formation
and propagstion of microcracks aleng inerfaces berween fiber/matrix and matrin/matrin constimte majeT
damags, and final coalescence of these microceacks is respansible for creep fracmss 2, This tvpe of rupture
mwede i8 in sharp contrast with the conventional shori-lerm fracture mode wherein her bridging and fiber pull-
out ase the prevailing phenomena”. Becanse most of the microoracks are found at inlerfazes orented in the
dirmimnunnihnﬂuprin:ipllm'l.ath-nqnimﬁsmhﬂdmtmﬂpilyalum'ﬂgmmm
linknge must be an important aspect of the creep-rupturs process. Diffasion-induced crack growth in single-
phase media has been considered previousty ™. The preseat work extends the treatment (o bimaterial EVALEm.
The major goal is te salve the crack-tip velocity in tha steacky-state croep stage as @ funclion of thermal-
mechanical loading parameters,

Al elevaled temperatures in excess of shout one third of the hemelogous temperature, mass transport becomes
activaled along high diffusivity paths such as interfaces and internal free surfaces. Because it takes [esy epergy
to fiorm & void at an interface than in the bulle, creep cavities are: predominant]y oheerved at interfsces, rather
then inside grains, Momover, of sll boundaries, cavitation seams o favor those moroal to the principel tensile
stress axis. Thess obesrvations suggest that stress-driven diffusion ascund the cavity peripbery plays an
impartant role 1o the cavity growth process. One possible and convincing mechanizm leading to cavity growih
involves & coupled process of transportation of species abong cavity surfaces towsrds the ipex vis surface
diffusicn and, from there, driving of atems further away ilong the interface via grain-boundsry diffusicn. In
this manner, the cavity tip is allowed 1o sdvance in w steady-state fashion. A direct proof showing this
mechanism is indeed cpermtive was provided by Varma and Dyson® for 4 nickel-base alloy. Hazed on this
specific growth kinetics, many diffusional cavity growth models have been proposed™ ™ of which the
diffusional crack growih model iz particularly relevant o the present cass. Two separate syst=ms will ba
discussed, namely, erack growth in a single-phase system and in a dissimilar medium, The former mima st
modeling matrix/matrix interfuces whersas the latter wims of fiber/matrix interfaces, taking the dizsimilerity
Nt ScCount.

CRACK GROWTH [N SINGLE-PHASE MEDIA

In ordes b0 scquire & final solution relating crack velocity bo applied stress intensity, K, a precise analysis of
the tensile stress distribution t the interface ahesd of the moving crack tip omust be performed. In the shsence
of diffusion, the spphizd K induces the well-known elaitic syess fiedd with & characteristic X7 type singularily,
whers X is the distance away from the crack tip. However, as msbler &iffuses from the crack surfaces and
deposits along the interface, the so callsd "wedging™ effoct is produced which alleviates the siress concentration
ut the crack tip. Cheang® has formulated this problem using the concept of infinitesimal edge dislocations to
evaluste the residual stresses induced by mass transport along the interface, The result is ag indegrel equation
for the unknown stress distribution, a{x):

W _
L!"ﬂ ) = _!h! dx (1
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where prime deaotes d/dx and x=X/L is a pondimensional boundary coordinate scaled by L :

= ED80 m

o N 4 (L-vHVET

"5 rath vely; i i diffusivity;
T ‘;mdﬂmmdhqﬂmammgh.ﬂ.&.u:lnmw
ﬁnﬁﬁﬁmﬁzm V is the crack velocily. The magnitude of L is typically in the order of &
micromeisr 2.

i i on was obtsined sumerically ', Tt was found that the stress
Eﬂthmﬂ: mﬁﬁch, in tum, is o fusction of V. Typical stressss for a=0,1,5,10
and 20, mapestively, ars plotted in Fig.l. Hers a haich om the wp urf; p‘;””'vmubrt
rondimensicnalization. For the ke of comparisoa, the slestic stresses furﬂnu.n a= mpj )
dashed line. It is ssen from this plot that the stress singularity  the crack (ip has boen climinated by diffusivn
mdﬂwpukmmmatmmdx=ﬂ.9L_mf#_mmqf@ammmmmgmb
15 be approximat=ly $1. beyond which the influsnce af q:mbwmummﬁmd .,rmm.“h,m
ﬁmmnmurmﬂmﬂaﬂnmmlﬂhmmh_mthmhwmjpm {11]]
ﬁpbylhnmm:nlmlu&n.fhsrd;ﬁmﬁpmh:ustuﬂuﬁrﬂrmw.

E])
K =075 of@) L'F + 0.50 e"{0) L ¥

This is a significant resuit as this equation q:-pmsmlm_: s wideapread applicability, not only lu;l: turreﬂ
rmhlafdiﬁmwmdr.gmthinasjngbu-ph-:dmcsyﬂ:m.mtl_mhaMremd:ln mhi %
systemns ms will be discussed later. In eddition, Cao £t al™ applied this equation Ly & problem of hig
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Figure L. Solutions of tensile stresses i the interface ahead of the crack tip.
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temperature, stress-corrosion cracking of ceramics in which ive liqui
. corrosive liquid product filled i i
and served as a major species in the mass transport process. e S

Theﬁnalgoalofexpressing](intermsofv or vi i stress
fu , , Ice versa, can be achieved by substituting the
:z:ﬂti::‘ llto:lh: ;:nck n: (namely, o(0)x V'?; ¢’(0) o V) in Eqn.(3). The Mlllyil a VK mlltwndn' ionship in

orm: k=0.845 (v='"? +v!1%) where k= K/Kzand v=V/ V__. H K iti
vlnlue based on the Griffith theory and V., is a materials parameter depending ;wm.d?ﬁ::::l:d-
:on_(s’tlc const‘mts. AIt can be shown that if the physically inadmissible branch of the equation is d:wmled 8 one-
ne relnuons.hfp betweeu the crack-tip velocity, V, and the applied stress intensity in mode I K, ‘m be
established. Solving v in terms of k, one finally arrives at the following expression: o

v=(059k + yo35K71 ) @

Itis.seenthufor-creepcmkgmwinginlsingi hase elastic material iffusi unique
;e};(nonishx_p em_erggs, irrespective of materials species ::tempemum Howeverl.,yudli::‘:::i i.n Bqn.(4)yz
o ' :d l:onslnp, in general, can not be cast in a simple form of a power-law equation which is eouventiol;nlly
. rd; F'mm empmc_al expression. Fig.2 pl.ou the equation in a double log space, and a few remarks are in
- First, %exmn threshold stress intensity, K, = 1.69 Ko, below which the applied stress is not
sufficient to drive the crack and, as a result, the crack ceases to propagate and sintering may actuall
.S:;t::dlyf, at higher K values, say K>4K, a power-law equation, V=(constant) - K b‘eeoni'u an mptote
a fair representation of Eqn.(4). Fi i i i
theory predicts that the stress f;‘:oig: l::utyyf,'mf: l;lmt;('h"d' s 169K the
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Figure 2. V-.K relationship predicted by the diffusive crack growth theory.
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CRACK GROWTH IN DISSIMILAR MEDIA

In the case of a crack growing along a fiber/matrix interface under creep conditions, what effects of
dissimilarity, if any, on the crack growth behavior between the fiber and the matrix, in terms of differing
physical and mechanical properties, becomes an interesting subject and deserves a thorough investigation. As
the geometry dictates, the crack appears to be much thinner than the grain size or fiber diameter. Plane-strain
conditions should prevail and this case can be modeled as a two-di ional, two-phase solid containing an
interfacial crack, phase 1 representing the fiber and phase 2 the matrix. The problem now is to solve the crack
growth rate for a given stress and temperature, and again this can be divided into two parts.

Crack-tip Conditions For the first part of the problem, Chusng er al.** have recently investigated the

crack-tip morphology that could be developed by surface diffusion-controlled crack growth along an interface

between the two dissimilar phases. In contrast to the symmetric case developed in single-phase systems, four

asymmetric cases are possible for two-phase media depending on the degree of dissimilarity in surface free

energy and diffusivity of the two adjoining phases. Excluding the physically inadmissible case of the tip

morphology, there are three possible cases of crack-tip morphology where the upper and lower cavity surfaces

are no longer symmetrical with respect to the tip owing to differing properties of the dissimilar phases. A tip
morphology map in the space of surface free emergies, v, versus v,, can be constructed to demonstrate
prospective areas where each case applies. The near-tip shape again can be uniquely described by a logarithmic
function as in the case of single-phase materials. However, the maximum half-thickness is now 2.0 L instead
of 1.41 L. These results yield a more complex expression, for the matter flux and the root radii (or the surface
curvatures) at the crack tip. These expressions involve physical properties of the two dissimilar phases.
However, the velocity dependence remains the same, namely, the curvature at the tip, x, ~ V'?, and the
matter flux at the tip, J,, ~ V**. Accordingly, the boundary conditions at the moving crack tip have the
following relationships: ¢(0) ~ V'? and ¢’(0) ~ V2. Of course, the proportionality constants will have lengthy
expressions in terms of materials constants and temperature. From Eqn.(1), the stress solution o(x) or in
tensorial term, o,,(x) hlong the interface will relate the far-field stress to the normal stress at the moving crack
tip. In order to solve Eqn. (1), initial conditions of stress at the crack tip have to be formulated. Expressions
of the crack-tip stress and its first derivative in terms of the unknown, a priori, crack velocity, V, will allow
the stress solution to yield the ultimate V-K relationship we desired.

The chemical poteatials at the crack surface and at the interface can be expressed in the following forms,
respectively: u,= —of} and pu,=0vyx where « here is surface curvature. The chemical potential at the crack
tip where the two crack surfaces join the interface must have a unique value, otherwise there will be an
unbounded flux there. This means that o, = —yx. But k= —V/2(1-F)/¢ where F msin § is the sine of the tip
angle, and ¢ is a length parameter defined by

13
0= (D-b-"-“) , ®
VieT

Here D, is surface diffusivity; §,, the thickness of the effective surface diffusion layer; v,, the surface energy.
Normally 8, is in the order of 0%. Let A, = (D,,5,0,)/(D5,(2,). Furthermore, it can be shown that the tip
shape at the upper surface has the form

7:"’(?1 +1,-1) 6)

F=1-—2 "1 2
L 5.G0,%a P
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whers subscript | means jhasc surf; e
I expreas the crack-tip stress, ,L :": Mhmﬂmmw Pamameter is y,. Finally, we are abls
adjoining phases 1 and 2. = velocity and other physical paramcters of the two

'____—-
O ™ L R e )
LA §, 9.4 8 - M

N“Mﬂﬂﬂnhmhwhmh -

e ; crack-Hp strass =

;:nm;it- idemtical 1o Eqn (7). Mate also *“mhmT.l;“mg mninlm-u-uflhc Phasc 2 parameters,
-{ }].ﬁumuﬂg‘murhlmmnt_vhm L g;mmwﬂ ¥ proportional o V2 (e

The first derivative of the crack-tip stress, a*(0) :
: : can be derived by m comhinaticn of gra g
Squation , conservation of mass ndmymmiﬁﬁquzn,mm““i, #ruin-boundary diffision

AR S T o
@ - T, Dt

VET)®
L]

where Dy, ilth.p:hMry:lil‘fuivityfmphu 1. k

mkhimpmm\rmh nfmmlih}wllhiﬂmﬁm:hﬂmwgofﬂ!mﬁp

Stresn Apalveg Tnfcurrmhtaﬁnﬂurmd\"ﬁt iomshi erface shond

: : : - nhmnﬁ.up-,-ur:-.mysiluﬂu
:m\ru_igll:nc:?pmmt_hc.undwl.mmhmﬁald.mhmuf:;p,muu EEL?:
;-umm._ : lulﬂzﬁcuj_ cnnk_hu been imvestigated by many suthors™®. The pegults ubanm
hmhm_ﬁmlhu mglap_hm-:u.{l] Uniaxial siressing rm]hinlmj:adnudamq:-::

Op* 10,y = 0 = Aghs “"}l?—lT, . uiﬂn{n,:J ®

Wﬁﬂ'ﬂiillh!urL'unfimmjrn.” and
respecively, &) in the Dirnc et uaction, . snd e e he  wd x dirsion,
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i Wyeali (1ogg)+pa(1+x )] [
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f is a Dundor's parameter™ defimed by

_ Iyl -1) a1
Byl t ol +1)

where § in these expressions is the shear modulus; and c=3-4r for plane-strain conditions, » being Poisson's
ratia. Equation (%) is a result with no crack-dislocstion interactions under the remots tsnails loading conditione.
In sddition to the normal stresses gemerated at the interface, dhesr soesses wre prodoced there which would
pot be thers undér & spmmetrical remots loading conditions were the rysiem monolithic mther than dissimilar,

Mow consider an arbilrary distribution of dislocations slong v =0 under the sction of & remote stress o, such
that db=5"dx. The stresses at sny point & con be integrated to yisld the following forma:

o.(x) = a_ -4 —du:_[f x, + Anps,) 2}
and
0,0 = -Af i’i"}dz, - AxpAx) . (13)

HNow, il may be argusd that thers sxists a phyiical requiremen (hal (be inlerface canmot resist shear girases
because of high-temperature creep. This is especially 50 m the case of advanced ceramics where flat boundarics
are often conted with thin filme of liguid phases (hel sre introdoced as gintering aids. This means thar g, =0
at the interfuce ahead of the cack tip. In addition, thers i & relatioeship between 4 and 3., namely,

-1 pd(x] dx 1)

ﬁ'r{]’_] - ;...ﬂ._“_{x _l_DJ o

anil Hilbert transformation leads to

oy o B3 (s
8, 1:-_{{:-:,} dx,

Substinuting Eqn.(15) inta Eqn.(12), we have

175




-y
0,(x) = a_- A(1-p?) f_ K-(%) dx, 16)

Again, by applying the Hilbert transformation, we finally arrive at

"21(1‘92)5',(1) = I&V(LJ dx an

» L
oxxo

because in the traction-free crack undary equa
PCaL : plane (y=0, x<0) g,=0. Using grain-bo diffusi i
eliminate § y in Eqn.(17) yields the following integro-diﬁirenﬁnl equation for the unlmo\lvn al O(I;)' ot
y(X):

L?-0"(x) =f

0

g

)
X X, dxo e

where a new L js defined by

, ’A(1-})<D,0>3,
I S o i i1
(19)

where <D 0> =Dy, +Dy,0;) is the sum of the two-phase properties. It was found, after comparing Eqn,

(18) with (1) that the tensile i
! creep stresses have the same solutions as ind; in Fi i
parameter, L, defined in Eqn.(19) is used as g scaling parameter. R By o

CONCLUSION

We have denved the V'K| lelatlonslnp for dlﬂuslon-mduced microcrac!
k growth in dlSSllnllll media under
Sustained loads at elevated tempentum. The funcuonal dependence of the tip velocnty on the Ippllﬂj KI 18

similar to the case of single i i
L . Phase media except for the two new materials constants, V__ and i
different expressions in terms of the elastic and physical properties of the adjoining p-h-ases o which have
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