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CREEP FAILURE IN LINEAR AND NONLINEAR
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Objectives
In all structural Eomponents the pra-existing cracks of

unknown magnitude decrease the confidence level associated

with the classic machinae design methodology based on stress

analysis of undamaged component as exemplified by the
standard procedures of Strength of Materials and Theory of

Elastieity. The degree af uncertainty is usually reflectad

by the variety of safety factors rasulting from an empirical

database and accepted almost universally in various design

Erojecta.

The primary objective of the Paper iz to provide a more

rational basis far evaluation aof the rasidual Btrength of

danaged material, which may contain Pre-existing cracks ar

micre-defects. The fail-safe design concept will ke adopted,

basing en the history of crack growth. The paper will focus
on the phenomenaon of time-dependent fracture Propagation by

creep mechanism.
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Nomenclature

!1.!2.1

t

elastic moduli and dashpots coefficients characterizing

standard linear solids
time

The characteristic relaxation time for the standard
linear solid

nondimensional time, = t/r

The glassy (short time t = 0) and rubbery (long time
t =e ) elastic moduli

ratio EL/EZ

the instantaneous critical K-factor
the applied K-factor

applied constant stress

Griffith critical stress evaluated at glassy state,
i.e., t =0

long-time tensile stress

ratio [vc/ao]2

time elapsed from the instant of load application to
the point of termination of the dormant stage of the

crack development.

the structural constant related to the size of the
process zone

initial crack length
current crack length
ratio = a/aj

process zone size
creep growth rate

nondimensional time which elapses from the instant of
crack growth to the onset of catastrophic failure

reciproical of the nondimensional rate of crack growth,

r= 20 1
r da/dec
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GROW OF V C K

The origin of the term VISCOELASTICITY lies in the simple
models, such as those of Maxwell, Voigt, or the standard linear
solid, which consist of springs and dashpots. The springs are
elastic and represent the behavior of a Hookean solid, the
dashpots are viscous and model the response of a Newtonian liquid,
hence the Theory of Viscoelasticity describes the behavior of
continua which exhibit a mixture of solid and liquid response.

While all solids under appropriate conditions will exhibit to
various degrees viscoelastic behavior or sensitivity to the rate
of loading in their response to mechanical loads, polymers appear
particularly susceptible in even the most benign environment.
Furthermore, polymers are finding more applications in which their
load carrying capacity becomes an integral part of the performance
of the structure.

Consequently, time-dependent fracture plays an important role
in determining the service life of polyméric materials as well as
viscoelastic components. Today, most of the fracture mechanics
approaches to crack propagation in polymeric structures have
modeled the material as being either linear or nonlinear
viscoelastic.

While studying response of linear viscoelastic solids to
existing "dormant" cracks contained within the solid Wnuk and
Knauss (1970)(9) have found that the process of failure develop-
ment can be divided into two stages:

1) Latent stage where ,; = 0, i.e., the crack does not

propagate;

2) Crack propagation stage for which ;.4 0.

In this section we shall review the essential results of the

theories based on the continuum mechanics.
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Consider a linear visccelastic material which could be
modeled by a standard linear solid, i.e. the three parameter model

a8 shown below.

m=rkE;
s )|
E| __J
— A
N —
£y
Fig. 1.1

E: B3 7 dencte the elastic moduli and dashpot viscesity

coefficients respectively, characterizing the mechanical response

of standard linear solid. The plane strain creep campliance for

this model D(t) is defined as the gtrain per unit stress induced

by a step-lcad of magnitude L

D) = 4
M

D) = (1 + o) = By

(1.1}
In which t denctes time, T is the characteristie relaxation time,
i.e. time required for stress rela¥ation of the alement by tha

factor of "e", in which "a" denotes the Euler number. Thea

relaxation of the element shown in Fig. 1.1 is governed by the

formulm.
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in which 31 denctes the instantaneous (or glassy) alastic

modulus in contrast to tha "rubbervy® or infinita alastic medulus,
€L = /()

ane obtains

At the instant af lcad application, £ = a7,

: S
W

g0y =
(1.1lb})

For a vary long time compared with the charactaristic time, + cne
lag

PR O Ly i | R i S 08 (1.1c)
L% hi §
It is ccnvenient to introduca the ratio
E
R v by B S 2
B0 ["“x: :2“"“"] 2)
and ancther ratio
A=) . Fo
0oy {1.2a)

Hara, E, denctes the rslaxation mecdulus at the glasay statas,
l.e., when-time t = 0, whila I, is the relaxation modulus at the
rubbery state, i.e., when tima ¢t = =

5 EI !2

- I1+E=

(1.2B}

By normalizing the creep complliance function, by tha
:ompliance at the instant of load application D(0), we obtain a

nendimensional functien

wic) -E‘E‘%-l +a-pa""! (1.7

For simplicity of the ascacicon lat




o =5 I -El Considering the ratios
!2'

Rm) - Eo
D(0) E_
The end of the first stage of fracture development is denoted by &
D(e,) 2
the symbol tI and referred to here as the "first critical time." m{- = [;G (1.6)
Wnuk (7] and Knauss [8) (1968) have derived the following formula ﬁ
which relates t_. to the applied load, as given by the K-factor,
I hence 2
and the material characteristics provided by the creep compliance g%g} = EEﬂ = E‘
-
function D. They suggested
D(tr) =(£§2y and thus, one may derive the following relation:
Do) K (1.4)
2, (1.7)
Here KG denotes the critical K-factor which corresponds. to the 3%2} - F%ﬂ = i!
° a
-
instantaneous (Griffith) fracture immediately following the
instant of load application. K is the applied K-factor, while From this equation the lower bound of the strength observed in
i Jdelayed failure experiment or the so-called long-time tensile
t; is the time which elapsed from the instant of load applica- strength can be predicted £.1,2
tion to the point of termination of the dormant stage of the crack * ‘e " % {Ej
development. (1.8)
‘E, (E,+E,)
. 2 2
For a step-load of magnitude % (9 < %rieeien) and substituting | % " e [-]?;]TZZ'J
for the values of K. and K for a Griffith crack in eq. (1.4),
& - o 2(148) (1.9)
one obtains: 2 “
D(c
—(—L). Jz_ e bl __Gz:ﬂ lherefore
D(0) K o a 1
o Ima .
2 o “(1+8)
[‘13] n2e T (1.10)
4 ,2
Since at the onset of crack propagation a =ag one finally 3 °
Combining eqs. (1.3) and (1.5) gives:
obtains
s - (9° | i) (
o 1.11)
—_— =] - -9
(1.5) D) = + B — Bexp(—0r)
¥Yhich is a well-known Wnuk-Knauss equation used as a predictor of One can further reduce expression (1.11) as follows:

the first critical time. Here o denotes constant applied stress, ¢
is the Griffith critical stress evaluated for the polymer in its

"glassy" state, i.e. when t = 0.
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r_2{l+l} :
T2 "1l+pg.pexp(-)
L-3
a
Finally, this squation can be solved for the first critical time:
2
o B 1 (1.12)
Ehﬂ[l-[;:j ]
Figure 1.2 illustrates the effects of locad ratio. :Jhﬁ on the
first critical time,

Note that a double logarithmic scale has

been used to Plot the graphs shown in Flg. 1:2

.

2.5
=
# &
2 &
R - Jﬂl(:TfT} A
Fig. (1.2)

First critical time in et

andard linear Viscoelastic solid vs. the
Ivading ratic,
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Next phase of time-dependent failure begins with an ensat of
rack propagatian and the ensuing relationzs c
:ongid

i

an be deduced oy
eration of the governing equation of moticon.

Enausa (1970} [9] and Wnuk (1971)

[10] have suggested an

squation of motion very similar in its Ftructure to equation

il.4]. Tha cnly difference is that now T is replaced by time
fL = a/a, A3 can be saen, je denotes the time which i3 needad
for the crack trip to traversa

its own process zona (4) |
Applying equation (1.4)

and replacing &, wich §c = a/a one
abtains

1+ﬂ-ﬁ-=?[-%] '[Ei]z

Introducing tha nondimensional

(2.1}
crack length

:-._
= -
=]

=

-~

(d.2)

wnd the strass intensity ratig

SO

nd substituting thesm quantitieg i

T (2.3)

nto equation (2.1) yields

tep-ae®™ _a [:l]

(2.4)

shera

P

L
- -
P

a -l.l.fln
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The scaling constant, s,as can be seen by setting the quantity
a/ar equal cto o' represents the size of the process zone 4
adjacent to the crack tip, namely, »# = 4/a,. Solving for the

reciprocal of the nondimensional rate of crack propagation,

r.
one obtains: Y [‘4]
a
exp(-ol) = -_‘—
(2.6)
rly -ln“*‘
SN
Hence
Id s
e— = 1n =
ar l1+8-n I:!] (2.7)
zda . >
ade -
“"“1‘I:T]
l+g-n :2
& . 3
@ 3 - (2.8)
oo

This is the nonlinear first order differential equation which

governs motion of the crack during the second phase of fracture

development.

Integrating Eq. (2.8) one obtains:

[ our - ;‘xn[l e ric

1 1

(2.9)

From that it follows
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s
1”-x

x (2.10)

X
8 (X) -.J:.I ln
°1
Here X denotes the current crack length normalized by its initial

value, a .
o

Equation (2.10) indicates the relation between the size of a
propagating crack (X) and time (8) needed for fracture develop-

ment at various loading ratios (n).

The results obtained numer-

ically from Equation (2.10) are shown in Fig. 2.1.

4

]
ﬁ R3 s
/ ¥
e
i A

-
o

non-dimensional time, 8= ¢/t 5

Fig. (2.1)
fistories of crack extension in a standard linear visco-elastic

s0lid computed for 4 different loading ratios n.
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48 can be acen from Flg. 2.1, the function X = L(®) passes through a

maximum at 8 certain valwe of time &, which 1s Identified with the second
critical time &lI' To find this point of maximum {xmax., ail] one needs Lo
seek a solutlon to the equation dE/ddr =ar. Using Eq. (2.3), 1t 18 noced

that the rate J3#/d% approaches zaro when the expressian

S . S
L“[!. A~ n('nf.}] 0 (2.11)

This occurs when the arguzent of the logarithmie function approaches ome, 1l.e.,

1+a-§-l’ {2.12)
Hence, one obtaln the predicted polnt of maximm on the curves shown in
Fig. 2.1, namely
SN
. (2.13)
and
. lr T . K
I1
lL+p-4
1 X {2.14)

These equatione were used to generate curves showa i Flg. 2.2,
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3.5 |

-*-=r=‘::t:zri*ﬁ*==L~::::j:::khhhqhtn\
. | \‘\,_ \ \

2 At 4

g T, A

E r

% l“-fn"-‘i
o 5 [}
lag(t 4/7)
Flg. (2.2)

Second critical time inm standard linear visccelastic solid

“inally, superimposing Flguras (1.2} aad (2.2} one may comstruct the

a0 called "map” of time—dependent Eracture which shows bath the first (ﬂll
£ s of a lo & -

amdd the second {GIT} eritical times as functions of the lead ratio af'-;

s ; "
this 1s shown in Fig. (2.3}, Fote thac the ratjo? /% e used on the

wertical axis in Fig. (2.3) is related to the previously introduced

]!
quantity n= (@8] as

Eallowa:
= = (2.15)
L L+g
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2.5 4_1

3 &z

log(a/a_)?

%
2210

\. Pr\é%
0

-4 6
le;(:z/'). loz(txx/v)

Fig. (2.3)

First and second critical time in Viscoelastic solid

3. Q9xsrn1ng_gsna;ign_gn_mgxing_szasx

Knauss (1968) (8), Wnuk (1969) (4) and Schapery (1975) (18)
Suggested that the motion of the crack is controlled by the
mechanical properties of the viscoelastic medium through the
relation

2
¥(se) = gfgfl . E?q

(3.:1)-

The time increment ét equals the time used by the crack front to

traverse the Process zone of length A, thus
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w
f)

e =4
a

! 4 2t = € intensity factore
Symbols LG ana K denote the =tress int

iffith) & load
*orreqPondng to the criticeal (Griffith) load and the actual lo

i i c the
respectively The K-factor incorporates variables such as

applied stress, crack size and geometry, namely

A
K =olwa 0(:) = g] ra E o)

The functior @ is geometry dependent, see Appendix; for instance

i i 1 ., one
"CCP) specimen, shown in Fig. 3.1, o

(3.4)

for the center crack panel

has .(‘) - I
v Jcos(ra/v)

5

Fig. 3.1
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Vnan thes Lostantansous eritlcal losd L (Griffich load) is introduced,

rhan E-factor ragulres che cricical valus

Y
KG - 'I'lp j(;‘) £1.5)

Hence, dividing expressions (3.3) and (3.3), one may dafine the racic

(' gl

LK
x & == X [_"‘:.nnlfvlj
#=2

(1.6)

Here. the nondimenslonal load, crack size and geomecIy parasecacs ars
dafined sz follows:

= load paTameTer, m = [:cja:lz

- crack gite paramecsr, X = LA

- gROmELIY pATAmaLeT, §= Blajw) [/ i(.a;u:.

for exasple, for che CCP geomeTry

|cul(rl ,"_uj i
" :nl(uf\rj {1.7)

Replacing the LAS of Eq. [3.1) by the linear form ln cerme of logarithes of

ét, L.=m.,
avslop®) |, e e (3.5)
and using expressiom (3.6) for the RHS of Eq. (1.1) one obtains
A + B logth=) = logd} 4 (3.6)
Tl
A+ B mci) = logéf #) (3.7)

hers, Tha "constants® A and B dapand on tha stTess leval ¢ (or n), and thay

are decermined axperimentally. For a given geomerry and at constant
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spplled load o = comat.. aguacion (3.7) can bae solved for cha normallzed

valocicy X = dX/d{c) and chan incagrated. The salutien for X rasulta
readily frea Eq. (3.7}

~ »
X - -w{é [hltﬁ“.' - l]‘} (1.8)

[ncegracion yialds the enlaclon batwsen current crack length X and tloe [

(§ = g/r), namely (sea Appendiz for datalls)

nel(xl
. K rlogd b
! i : I q:xplL—Tl—'—] « sap(= fmc (3.7
1

For any given functlon 4 = 4(X) this Lncagral can be evaluated numerically.
Wvhen # = L, the Griffich configuraclon is considered, and than Eq. (3.8)

can ba lncegrated in & closed form

l-i;:%:-n—j-ﬁ-[x’-] (3.10)
This provides che ralacion hacween nandinmensicral crack lengrh X and che
nondissnsional tizs 4. Examples aof curves thac tesulc from Equ. (3.8} and
{1.10) are given in Flgs. 3.3, 1.4, and 3.5,
Iz Ls sswn chat at & cartain crack slze, say X= K“, valocity becomes
eichar unbounded or vary large. Thls instanc 4= 4 correapends o the

11
cransition of slowly moving crack to catastrophic fracture. Thus, ac X~

X, normallizad velocicy # becomes "c-: and tise 'II is referred to s che
sgcond sriclical time. Therefors che cocal Lifs=-cise of tha specioen
conslics af che incubaclon time *3-[. discussed pravicualy, and the second

ceicleal cime 11 {sam Fig. 3.2)}.

lifa—clme =&, = E--,I ] "-‘-II (3.11)
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Thus, for s given load level (fixed n), the critical velocity 'er is read

from Fig. 3.2, then this value is plugged into Bq. (3.13) resulting in the

log(n/ow) =

prediction of the second critical time, 011+ This process say be shown
\ schematically as follows

3 (XX curve) 3.(3.13)
\‘\ \\ e’ ;e n X
~N

v

er er '!I
"\

N =7
- ~— Nz |7

naly //

«
4
/

1 lo;(:llt).log(tu/'r).hg(éuﬂ) 12

Fle. (3.2)

veloclity of the
O crack propagation

o crack length X 10
The life expectation of the specinen in viscoelastic medium,

Fig. (3.3)

Formula for lx vas given in Section 2. Nov, an estimate of the ceritical Xx

5 he /) } ] s nelo)
is provided by the solution to X in terms of velocity V, obtained from Eq. T!» H 12 z
< S| nat £ nialy
(3.8) as follows (6 =1) :.§ —’/ ] g i—’}
:Jf; / /h-i_’-y/ : / NrLYy f
- 0 2 S : }
X ] T 312 s = i 5 :
er "P[’ ln(;‘-) A 3.1 ) > == / /
er 0 1
0 non-dimensional time 8 2 o non-dimensional time 2
VWicth this value substituted for X {n E3. (3.9) the second critical time may
Fig. (3.4) Fig. (3.9)
be evaluated:
/3
- A
1“4 o [’u - 1] (3.13)

The only probles is how to estimate the quanticy V" vhich sppears in Iq.
(3.12). The estimation {s done by inspection of curves shown {n Fig. 3.2.

7
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Appendix

L . -
= — {Inl - (a.8)
#The denvation of equation of mation for the crack propagation in viscoelastic media., in{?) B {In{=) }
Wouk[?] and Keausa[8] (1968), have derived the following formula which relates G Tl Solving for the value of 8, ooe can obtain
i.e., the time elapsed from the instant of load application to the peint of termination ! .
of the dormant stage of crack devolpment, where & = (), that is when 0 < ¢ < i1 As 9;=¢_=p[§[ln["-}—a‘l!] (4.5
follows af it can be shown in ancther form as
Ditr) _  fgy, ’ My n4k (A.10)
=(— [4.1) el
o) ~ K A e
Substituting for the values of Kg = ag,/¥ag a0d K = 0\/d in the above expression, | Therefare the first critical time can be approximated by log-log approach in the
one can obtain ing equati
D(ey) _ {¢g¢rM{q,'ﬁﬁ}= e : following i 4 T
D{o) oy/rad(a/W) i or="5 ki
ar E
Ditr) _ oay300, Ble)
Do) ‘¢’ a BwX) (4.3)
We have defined n = {agfe)?, X =afaq
and @(X) = {$(w)/$(w)}", one can rewrite eguation (4.3) as fallow i
D{t,r] Ke j
e e TR T o
ooy = k) = x X (A.4)

We show in seccion | for the termination of the dormant stage when a = 0, that.

Ditr)
Do)
where; #r = {;fr. By equating equation (4.4) and equation {4.5) one can obtain

=1+ 3~ Jexp{-f) (4.5) |

2} o 2
Do) I:N.XJ—H.S 3 exp{=8y) (A.6)

For chosen time interval equation {A.6) can be repressnted by siraight line equation
if it is plotted in Logarithmic scale, this straight line equation can be written as

Inf n) = A + B In(8)) (A.7)
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Now, in crack propagation stages for which a # 0.Knauss(1970)(9], and Wnuk The auxiliary shape function for

(1971)[10], have suggested the same equations the only difference is that now t; is

replaced by time 6t = A/a, where 6t is the time which is needed for the crack tip to Center Crack Panel, CCP
traverse it’s own process zone (A). Applying these condition into equation (A.4) Scor(d)= \/_'_ L1 —0.025(3)" + 0.06(3)]
one can get
D(Jt) ( )‘j n ¢(X) (A.12)
‘D(0) s
For a chosen interval of time equation (A.12), can be repla,ced by a straight line when .
a double logarithmic scale is used such as double logarithmic linearization procedure -
leads to an equation such as
In{¥(t)} = A+ B In(t/r) th<t<t (A.13) N
8
or =
st p
In{(t)} = A + B in(6t/7), == (A.14)
1
Where; p = A/aq, therefore equation (A.12) can be written as
n #(X) p
= - A.15 0
In{ X } A+Bln(X) ( ) 5 Py o
or
w | ®ccr(iy)
py_1 (X ) (A.16) =
in(%) = H{inl 5] - a) N
P 0.1 1.025
£ = £~ (A.17)
X ezp {g[m(rxt-l —A]} 02| 1.112
by integrating both side of equation (10.72) leads to 0.3 | 1.304
0.4 |1.799
X 1 n ¢(X) 4
- _—) - dX = dé A.18 0.5 | 1.278 x 10
[ eartga (5= - Aax =, ! (.18)

Thus, the approximation of the non-dimensional critical time can now be predicted
from the above equation as E

orr = [ cap{ 5“5 — Ay (a.19)
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The auxliary shape fonction for Tha auxiliary shape function for
Single Edge Notch, SEN Dauhle Edge Notch, DEN
-0 514 50l 3 1
beenl) = Hilw) fal i) i QDEN(%] = {Lln e T g POl }
Where;
i) = Uy et
ay o [OTE e i 5
flE) {%ﬂ} ;
5
B
F 4
]
=
>
=
= L
]
=
o
1 i 0 w 0.49
I
% | Poewld)
Vg m = 0.001 | 1.122
(#) y 3 01 |L118
¥ Fsunl) 1 02 [1132
0.0001 | 11222 - 0.3 1.228
0.1 1.196 04 | 1567
0.2 L.367 0.5 1.019 = 10*
0.3 1.655
0.4 2.108
0.5 2827 :
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Cor(sy) = {7:7}{(1%‘{)?}{0866 +4.64(5%) — 13.32(%)* + 14.72(%)® - 5.6(%)*}

$or(iw)

The auxiliary shape function for

Compact Tension, CT

.
1l

®or(%)

5.392

5.79

6.493

7.707

e
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The auxiliary shape function for

Three Point Bending, SPB

®apa(y) = {199 — (% — ()7][2.15 — 3.93(% + 2.7()}

aps(i)

—

{(1+2(%)H-w)

®3p8()
1.09

0.1 | 0.986

0.2 | 0.981

0.3 | 1.043
0.4(1.173

0.5 1.826

o il“
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The auxiliary shape function for
Four Point Bending, §PE

bers(@) = n(FH0IW + 0.189 ()}
Where;

alw) = ;‘}-ﬁ\{@

aa() = {1 — sin(FH)}

&.ralil)

e
o
(7]

¥ | ®uenliy)
1.122
0.1 | 1.041
0.2 | 1.035
0.3 | 1.098
94 | 1.2
0.5 | 1475

=

186

REFERENCES:

1| Graham G. A. C., “Two Extending Crack Problems in Linear Viscoelastic ity
Theory” Quarterly of Applied Mathematics, Vol. 27, Na. 4, 1870, pp-407-507.

[2] Nuismer, B 1., “On the Governing Eqnation for (uasi-Static Crack Growth o
linearly Viscoelastic Materials, Jowrnal of Applied Mechanics, Val 41, Ne. 3,
1974, pp.631-634.

[3] Williams, M. L., “Initiation and Growth of Viscoslastic Fracture”, International
Journal of Practurs Mechanica, Vol 1, No. 4, 1963, pp.292-310

4] Waok P. W, and Kpauss, W.G.* Delayed Fracture m Viscoelastic-Plastic
Solids” GALCITSM 68-8, California [nstitute of Techoology (March 1963)

(5] Cherepanov, G- F., “Crack in Solids”, International Journal af Solids & Strue-
tures, Vol. 4, 1968, pp.411-3L

[6| Eostrav, B. V. and MNikdtin, L. V., “SanqumlebhmufMacha.niun{
Brittle Failure”, Archiwum Mechaniki Stosowans;. Vol. 22, 1970, pp- T49-TT6.

(7] Wank, M.p, “Nonlinear Time Dependent Failure in Polymers and Metals at
Elevated Temperature", in Procesding of [nternational Conference on Fracture
Mechanica, [CFFM, 1987, Shanghai, China, Fudan Univessity Press, Editors: C.
Ouyaag, M. Salata and C. L. Chaw, pp- 661-670.

3| Knaums, W.G.," Deiayed Failore-The Griffith Problem for linear Viscoelastic Ma-
terials." GALCITSM 68-15, California [nstitute af Technology (September 1968)

[9] Kmmusa, W.G_*The Griffith Problem for Linear Viscpelastic Materials,” [nler-
aadional Jowrnal of Fracturs Mechanics, 6, No. 1 (1970), pp. 7-20

167




(10] Wnuk, M.P.. Subcritical Growth of Fracture (Inelastic Fatigue)”, International
Journal of Fracture Mechanics, Vol. 7, 1971 (383-407)

(11] Tada, H., Paris, P.C., and Irwin, G.R., The Stress Analysis of Crack Handbook,
Del Research Corporation, Hellertown, PA, 1973

[12] Landes, J.D. and Begley, J.A., “A Fracture Mechanics Approach to Creep
Crack Growth. " ASTM STP, 950, American Society for Testing and Materi-
als, Philadelphia, 19786, pp. 128-148

(13] Hoff, N.J. “Approximate Analysis of Structures in the Presence of Moderately
large Creep Deformations.” Quarterly of Applied Mathematics, Vol. 12, 1954, PP-
49-55

(14] Riedle, H., “Creep Crack Growth.” ASTM STP 1020, American Society for
Testing and Materials, Philadelphia, 1989, pp.101-126.

[15] Reidel, H. and Rice, J.R., “Tensile Cracks in Creeping Solid.” ASTM STP 700,
American Society for Testing and Materials, Philadelphia, 1980, pp. 112-130

(16] Saxena, A.,“Creep Crack Growth under Non-Steady-State Conditions.” ASTM
STP 905, American Society for Testing and Materials, Philadelphia, 1990,
Pp.185-201

(17] Riedel, H., “Creep Deformation at Crack Tips in Elastic-Viscoelastic Solids.”
Journal of Mechanics and Physics of Solids, Vol 29 ,1981, pp. 35-49.

(18] Schapery, R.A. “A Theory of Crack Initiation and Growth in Viscoelastic Media-
I. Theoretical Devolpment.” International Journal of Fracture, Vol 11, 1975,
pp.141-159.

(19] Schapery, R.A. “A Theory of Crack Initiation and Growth in Viscoelastic Media-
II. Approximate Methods of Analysis” International Journal of Fracture, Vol 11,
1975, pp.369-388

[20] Schapery, R.A. “A Theory of Crack Initiation and Growth in Viscoelastic Media-
III. Analysis of Continuous Growth.” International journal of Fracture, Vol 11,
1975, pp. 549-562.

168



User
Rettangolo


