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ABSTRACT

The lifetime of ceramic specimens and components is commonly interpreted in terms of
a theory, which is based on the presence of natural flaws like cracks and on the
growth of these cracks according to v = AK"™ until fracture occurs (Wiederhomn, 1974;
Evans and Fuller, 1974; Evans and Wiederhorn, 1974). The statistical scatter of
strength and lifetime is related to the distribution of the initial flaw sizes. The
Weibull distribution is usually used for a quantative description. Therefore, a basic
concept is considered which allows to determine the reliability of ceramic
components. The applicability of this concept has however to be proved.

In high strength ceramic, there is a rising crack resistance curve (R-curve effect)
in addition to the time-dependent crack growth. It is assumed in the present paper
that the R-curve effect is caused by bridges between the crack flanks (Knehans and
Steinbrech, 1982), which unloads the actual crack tip. The formulation of the crack
growth law is similar to that of Fett and Munz (1990). However, a different load-
displacement equation of the bridges is proposed and verified as far as possible
within the experimental results.

This theory is applied to macroscopic cracks and natural flaws in SisNa. The model
parameters were adjusted to the experiments on macroscopic cracks with numerical
methods. The lifetimes of components containing natural flaws were estimated by
integrating the crack growth law.
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EXPERIMENTAL

Material. A commercial sintered silicon nitride (SSN) was used. The measured
mechanical properties at ambient temperature are compiled in Table 1.

Compliance Method. The growth of macroscopic cracks in 4-point bend specimens was
investigated under ambient temperature, atmospheric conditions and different loading
rates (0.001 MPa/sec to 1 MPa/sec). The crack length was calculated due to the
compliance of the specimen. The (relative) loadline displacement was measured with a

3-point measurement device (resolution 0.01 pm).
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Table 1. Material Properties.

spec. weight p [107 kg m -] 3,15
hardness H [GPa] 315
E-modulus [GPa] 283
G=modulus [GPa] 110
Poisson ratioc v o,28
characteristic fracture

strength o_ [MPa] 535

Weibull modulus m 14,4

In-situ Experiments. In order o enable direct investigations of the crack growth and
the mechanisms acting behind the crack tp an in-situ testing device for a scanning
electron microscope (SEM) was built. This device works with 3-point bend specimens
with a load cell based on strain gages and with 2 piezo aclwator. Figure | shows the
moumtad in-situ lesting device. The experiments can be performed with variable load
cycles, and the tension surface as wall as the side surface of the specimen can be
observed.

—— specimen

— load cell

Fig. 1: Loading device for SEM investgations.

PHENOMENOLOGICAL CRACK GROWTH MODEL
The crack growth velocity & should be described as a function of the lpading while

bridges between the crack flanks are present. Figure 2 shows the model
schematically. The crack flanks are bound by bridges until the crack opening

274

o - T ———

-

= A

displacement reaches the limiting valve Aumn. The bridges break above this value.
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Fig. 2: Geometry of the model.

The stress mtensity factor ot the crack dp is given By

= - (1]
Eejp = Eoxe ~ & o .

] & (2)
where K_ . ¥ gva

comes from the external stress @ (a = crack lemgth, ¥ = geomelry fumction) and Kr is
the contribution caused by bridging. It is phenomenclogically proposed la be

Qfa-a_}
|

Q.'_‘Las a-a_= aas

= < Aa
s 3 (3)

i is the inital crack length, and Q and Aas are parameters, Bquanod (3)
?::ﬁ; the increase of the hridb'mg effects until & maximum value is reached w&‘lh
increasing crack length. The linear dependency was chosen in order to dm?be r:
experimental resulls approximately. Other functional depervdencies are _pasuble c;ll'
different materials {Felt and Munz, 1990). An explanation of the linear increase wi
e given later with respect o the load-displacement equation of the bridges.

The crack velocity is described with the commaon power law depending on the crack tip
strass-inlensity factor
a=a Hir:l:'.p : (4)

where A and n are material parameters.
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In the case of time-independent crack growth the crack tip stress-intensit f i
equal to the critical value Ki. This leads to P MR SSEES

Kext: = KIc + 1(v ° (5)

In the case of time-dependent behaviour the crack owth 1 i i
integrated with the Runge-Kutta method. & ko B Sy

In order to adjust the model parameters to the experimental results, a fit routine
similar to the Levenberg-Marquardt algorithm (Press and Flanery, 1986), wa;
established, where the numerical integration of the crack growth law is used as a
subroutine of the fit routine.

RESULTS

M_acrpcracks. The measurements showed a strong increase of the crack resistance curve
with increasing crack length. The results of two measurements in the SEM (vacuum
room temperature) are plotted in Fig. 3. Subcritical crack growth was not observed,
therefore Ksup is equal to Ki for the points measured. The linear increase of Keu
wnh(3t;1e crack extension can clearly be seen, which motivated the functional form of
eq. (3).
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Fig. 3. Crack-resistance curves under vacuum.
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Fig. 4. Crack extension as a function of time in air.
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Subcritical crack growth was observed under atmospheric conditions. In Fig. 4, the
crack length is plotted as a function of time at a loading rate of 0.002 MPa/sec. A
typical observation for all these experiments is a large region with approximately
constant crack velocity. This is caused by the increasing crack resistance, Kv, while
Kex is increasing at the same time. Both effects nearly compensate each other. The

model describes this situation well (Fig. 4).

Adjustment of Model Parameters. The value Kic was determined from Kex at that time
when first crack growth was indicated by the specimens compliance; Kex had been
measured in a fast bending test. The value is Kic = 2.0 MPavm. The other model
parameters, which were adjusted to crack growth experiments in vacuum (in SEM) and in
air, are noted in Table 2.

In Fig. 5, the quality of this adjustment for two experiments on macrocracks under
vacuum (SEM) is shown. The comparison for crack growth in air has already been given
in Fig. 4.

Table 2: Material parameters (units: m, MPa).

experimental A A A

conditions Q ag

air 7950 380-10"% 1074 150

4-point bending

vacuum -6

3-point bending 8560 520:10 = =
7

in—situ vacuum

4 O A991
] O A942
—— model
R I mode
100 300 500
a—aq [um]

Fig. 5: Unique R-curve for two experiments.

Application of Ki to Natural Flaws. In Fig. 6, the fractograghically determined
sizes of the fracture origins in 4-point bending specimens (without macroscopic
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a) left

b) right

Fig. 7. SEM photographs of bridges.
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The crack opening displacement Au was measured as a fenction of the distance x from
the crack tip in the SEM. The result is given by the following adjusted aquahon:

8.4 (1-*-'21- E

T —
g L&)
7% »

v,

Au{x) =
(rn/2)

Figure B shows the experimental resulis and the curve calculated with eq. (6)
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Fig. 8. Measured crack-opening displacement and eq. (6).

The load-displacement equation for the bridges should be estimated from the
macroscopic behaviour. The load, which is transminted by the bridges, is assumed 1o
be a continuous function of the relarive displacement of the crack flanks u. The
influence of the bridges 1o the stress intensity factor is

- |

a
K, =] “gix,a) o [u(x)] dx. (1)
o

where x is the distance from the crack tip and g(x.a) is a weight function. Iy the
case of a small bridging zone, compared to the crack length, gixa) = (mu2) " is
valid. Otherwise, g(x.a) depends of the specimen geometry and is given for bending
specimens after Fett and Munz (1990}

Equaticn (5) is only compatible 1o the phencmenological eg. (3), if the integrand is
neither. dependent on % nor on a. This is the case only, i Ov = vX and under the
assumption of a small bridging zome ‘g = 1#3). This leads to a linear relation
hetween ov and Au

EQE Au for du < “'I'u"naa:
16-8(1-v°) Big ;
o, (u) = =
s o '
D or Au > Woax

The mazimum value Ausss, where the bridges fail, is given by eq. (3) with x = Aas




The arguments, which lead to eq. (6) are not theoretically consistent. From a
fracture-mechanical point of view, the crack-opening displacement u(x) differs from
the square-root dependence on x in presence of stresses along the crack flanks. The
exact description would require the (numerical) solution of an integral equation. At
least, eq. (6) describes the crack-opening displacement good enough concerning the
measurement errors, and load-displacement equations, strongly differing from eq.
(8), will not correspond to the measured results of egs. (3) and (6).

Lifetime calculation for short cracks. In Fig. 9, the calculated lifetime is plotted
for various initial crack lengths. The parameters, which were presented before, were
used for the crack growth law. Bridging effects were neglected (Q = 0) because they
have no significant influence. Therefore, the small cracks do not take credit from
the R-curve effect in this materials.
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Fig. 9. Calculated lifetimes.
CONCLUSION

A pronounced R-curve was found for silicon nitride, which results from bridging
effects behind the crack tip. A fracture-mechanical model was established taking
bridging effects as well as slow crack growth into account. It tumed out that there
is only a material-dependent load-displacement equation for the bridging, but no
unique R-curve.

REFERENCES

Evans, A.G., and E.R. Fuller (1974), Crack Propagation in Ceramic Materials Under
Cyclic Loading Conditions, Metall. Trans. 5, 27-33.

Evans, A.G., and S.M. Wiederhorn (1974), Proof-Testing of Ceramic Materials - An
Analytical Basis for Failure Prediction, Int. J. Fracture 11, 379-392.

Fett, T., and D. Munz (1990), Influence of Crack Surface Interactions on Stress
Intensity Factors in Ceramics, J. Mat. Sci. Letters 9, 1403-1406.

Knehans, R., and R. Steinbrech (1982), Memory Effects of Crack Resistance During Slow
Crack Growth in Notched Al203 Bend Specimens, J. Mater. Sci. Letters 1,327-329.
Press, W.H., and B. Flanery (1986), Numerical Recipes, Cambridge University Press.
Wiederhorn, S.M. (1974), Reliability, Life Prediction and Proof-Testing of Ceramics,
in: Ceramics for High-Performance Applications, J.J. Burke, A.E. Gorum, R.N. Katz,
Eds., Chestnut Hill, 633-663.

Mohrmann, R., M. Rombach, H. Riedel (1992), Anwendung eines RiBwachstumsmodells auf
Siliziumnitrid, IWM-Bericht M 3/92, Freiburg.

280


User
Rettangolo


