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ABSTRACT

A model has been developed to study the fatigue wear process of surfaces.
The rate of damage accumulation as furiction of the load and depth is
shown to determine the character of the process. In some cases there are
two tvpes of failure: surface wear and undersurface disruption which has
a character of delamination. Rates of surface, undersurface and total
wear. moments of delamination. thickness of separating layers are
determined numerically.It is shown that for steady-state stage of process
within the framework of the model integral evaluation of total wear rate
may be obtained analytically if the rate of damage accumulation is a
knowni function.
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INTRODUCTION

Wear is a process of gradual trepeated)  failure of surface layers of
bodies in contact. Thus for wear process understanding we must involve in
consideration contact mechaniecs and failure mechanics. In analysis based

o contact mechanics specific feature of problems including wear is the

rrogressive diminishing of the body size and the change of their shape,
which results in redistribution of contact pressure, controlling in turn
the wear process:.

Zpecific feature of wear i considered in frames of failure mechanics is
repeated character of the surface disruption ( in contrast with design
failure where the propagation of crack is as a rule identical to
catastrophe). That is why an investigation of different modes of surface
failure (such as fatigue. erosive. abrasive wear) is based on ideas of
failure mechanics but the peculiarities of surface failure necessitate
their modificstion and development. For example the theory of fracture
was applied (Kolesnikov and Morozov,1989) in consideration of erosive
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wear (arising in interaction of a stream of abrasive particles and a

surface of solid). An analysis of fatigue wear can also be based on the -

Zeneral theory of fatigue (Collins. 1981).

Fatigue failure of material occurs as a result of damage accumulation
process during cyclic loading. Failure takes place when dsmage reaches a
threshold level. Such understanding of fatigue mechanism is generally
accepted. Although there are a lot of different rhysical approaches to
damage concept, in calculation an increment of damage per load cycle 1is
assumed to depend on & characteristic of stress field.

IFn thi_s parer an approach using the concept of fatigue is applied for
investigation of surface failure. We investigate here not the fatigue
fa:_Llurt_a as physical phenomenon but the kineties of the fatigue wear,
which is analyzed provided that the function of damage accumulation
rate is known.

THEORETICAL MODEL

We consider a wear of the half-space which is acted by a cyclic surface
load. Oscillating undersurface stress field causes a damage accumulation
Process. Suppose rate of damage accumulation Q=dQ/dtz is a function of
amplitude value of the load P(t) and the distance { from surface of the
half-space to a given point. Since the stress field vanishes at infinity,

lim q(Z .P)=0,
s

[V

We use a fixed cartesian reference frame with the origin on the surfac
at ’I‘:Toand directing the z-axis inside the half-space, the x- and
y-axes along the half-space surface.

It b_lill !_3e shown below that the surface coordinate in wear process is
a.plegevuse continuous function of time £(T). where Z(T Y=0. For each
time interval [Tn,Tnﬂ] (n=0,1,2,...), where £(T) is continuous we  can

determine damage accumulation function by the equation (z>&(T))

Q(z.T):fq(z~((t),P(t)')dt+Qn(z) (1

Hij
n

where Qn(z):Q(z.Tn). 0= Qn(z)<1. .
Failure takes place the a point z at the time instant T* in which
it is satisfied the failure criterion

acz®.T")=1 (2)

Consider the wear process from the initial time Tu<n:0). It appears from

the equat.:ion (1) that the failure process is determined by q(7 .P) and
Qo(z) which we treat as continuous. If q(f{ .P) and Q(z) are monotone

decreasing with depth, the condition (2) is correct only for z=£(T) ¢nn
the surface of the half-space) after the time instant Tlv:f.'(Tl):O,’.
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Continuous change of linear size of the body Z(T) we shall characterize
by the term "surface wear'.

If one of the function q({.P) and Q(z) (or both of them) is not monotone
decreasing with z, for example if this function has a maximum on some
depth, the condition (2) may become correct for an internal point z:z‘of
the half-space. In this case at the time instant T‘undersurface failure

(separation of a layer of some thickness Az =z, ) takes place which is

then followed by continuous surface wear ;at T = ’I‘2 undersurface
disruption (Azzz z,- E(Tz—(])_ z,= {’(T;O)) takes place again etc.

Hence Z(T) is a piecewise function in this case.

In each time interval [Tn. T ., 1 (n=0,1,2,...) the function Q(z.T)

n+1
(2z>z_ ) is determined from the equation (1). The following integral
equation for surface wear rate in interval [Tn'Tn¢1] is derived based on

(1) and (2)

z
dT 1 8q(f -C ,P) dT da,z)
- - —dr+ (3
dz a(0,P) oF dt de
‘Iz
n

Equation (3) for P(t)=const is Volterra integral equation of the second
kind which can be solved using Laplace-Karson transformation.

Thus if we know function a(C.P), Q(z) it 1is possible to
describe the kinetics of the surface failure.

FAILURE PROCESS IN CASE q({,P)=Kt :rtxqax P(t)=const

In case of complex stress field it is common practice to determine a
rate of damage accumulation in terms of equivalent stresses (for example,
maximum shear or maximum normal stress) which play the main part in the
given kind of failure (Collins 1981).

For the sake of definiteness an amplitude value of the maximum shear
stress T, ax will be used below as a criterion of damage accumulation,

power law q(f ,P) and T s relationship is postulated:

ac ,P>=xrm:x<z P) @)

Parameters K and N can be determined in special frictional fatigue tests.
There are data which demonstrate for several materials quantitative
coincidence of parameters of surface and bulk fatigue failure (Kragelsky
et al.) for this materials parameters K and N can be determined in
standard fatigue tests.
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de consider such oscillating stress field in an elastic ha%f—space for
which the function = coincides with the one occurring along the
ax

vertical axis z of spherical indenter (R is its radius) conFactlng ylth
an elastic half-space. It is approximatly valid for identic spherical
indenters sliding without friction along the surface of half—space.
Using an equation for + ( Hamilton and Goodman. 1966) and equation (4)

Wwe can write:

max

N
I 3PRY7? 3p
a(” ,Py=K O.Spow = , a= ;E: » BT et (5)

w(B=140-1.5(14t%Y (140t arceta(t)

Specific features of the function q(f .P) which determine the - disruption

Process are its nonmonotone character (presence of maximum) and the
fact that lim q({ ,P)=0.
I 30

In this case it is possible to consider damage Q(z,P) of matgr?al
at each instant as to be the same for all points at the. spgclfled
depth z. Thus disruption of the half-space has delamination
character and the shape of the contact recovers every time.
Consider fracture process in case N=5, Qo(z)ZO. If P:con;t in
dimensionless coordinates

the function Q(z".8) does not depend on the }ogd. .Consequenply an
influence of the load shows itself only in modlflcatlon. of time and
distance scales (in accordance with coordinate transformation).

100

Q=

50

o
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Fig.2 Wear process w(t) for

Fig.1 Damage accumulation function
) ag p(t):pm, N=5.

Q in failure process (P(t):Pm,N:S).

The kinetics of the process was studied numerically. The'funotion Q(; )
is depicted in Fig.1. Before the first act of_ disrqptlon ’therg is a
typical shape (I) of Q(z".8), After the first disruption Q(z",8) is the
monotone function (II) which has its maximum on the surface. In the
process of dasmage accumulation a bending point appears at some depth
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11y, When undersurface maximum value is equal to 1 the next act of
Jisruption occurs ete. After six acts the undersurface disruption ends
and the surface wear rate approaches to g constant. Then Q(z".8) takes
4 shape which is characteristic for the surface wear (IV).

The wear process for this case is illustrated in Fig.2. The instants of
undersurface disruption are marked with stars, numbers near the stars
show the depth of disruption.

‘aleulations reveal the influence of the exponent N on the process. 1In
‘nse N=3 only one act of undersurface disruption occurs, if N=5.5 then
.83 acts take place. However in case P=const there are common features of
'he fracture process. They are monotone diminishing of separating
layers thickness, cessation of undersurface disruption, transit to the
steady-state surface wear.

INFLUENCE OF P(t) ON THE FAILURE PROCESS

contact area, waviness, periodic character of failure etc. We simulate it

keN

5=

P(t) [1+6., k'I‘OS t<(k+0.-’5)’1'o
m

1-5, (k+0.5)2}5 t<(k+l)%

Ye have analyzed an influence of & on the process. The results of
calculation are depicted in Fig. 3(a,b,c) for 6=0.2.,8=0.5, 4=0.8
(T/T _=2/5). For the small & the process is similar to that for the case
P(t)gconst. i.e. after several acts of undersurface desruption there is

only surface wear (with its rate changing periodically ) .When S
increases there is no more cessation of undersurface disruption. It is
possible to divide the process in two stages : initial one when

“bpearance of undersurface disruptions not the direct consequence
of  load change and the secona one (steady-state stage) when the
undersurface disruption occurs periodically with some delay after an
instant of 1oad increasing. A number of acts of disruption per each
period depends on & and increases with its growth.

P/P/ﬂ - P/ - PP
9 _D [—] H [—-! ﬂ ’——1

a2

Fig.3 Wear process for different amplitudes of load variation

225



In Fig.4(a,b,c) you can see the failure process as a function
of time in cases TO/TMZI/ZO. TO/’I'm:Z/lS, ’I‘O/Tm:Z/S (6=0.7).

In spite of the fact the average value of PN(t)is the same for the three
processes , there is qualitative difference between them. If the period
is small the system "does not feel" the changdes of P(t) and undersurface
disruption ends (Fig.4a). When the period increases undersurface
disruption does not end (Fig.4b). For greater periods it is periodic in
accordance with function P(t).

We have studied also the wear process when limits of changes and specific

time intervals were the same (620.7,1’0

/T =1/5) but the functions P(t)
were different. "

P/Pn P/Pr
s w,
)
Fig.4 Wear process for different periods of load variation
The results of calculations show that Ffor smooth function P(t)=

1+6005(2rrt/'1’°) undersurface disruption ends (Fig.5a).In case of piecewise

continuous function P(t) in the steady-state stage we have steady-state
undersurface disruption (Fig.Sb). Fig.5c shows the dependence of the wear
versus time in case P(t) is a piecewise constant random function with
uniform distribution on the interval [0.3.1.7]. In this case undersurface
disruption does not end., the instants of its arising are correlated

with the instants of significant jumps of P(t).

ZP/PM -P/pm
N\VAVAVAVAVAVAY M HTHA
2 Y

a)

Fig.5 Wear process for various types of function P(t)
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STEADY-STATE STAGE CHARACTERISTICS

Determine total damage accumulated by material at an instant T as,
)
TY=[acz,Tidz,
(T

where £ (T) is

the coordinate of surface which changes during the wear. (T)
decreases as a result of material separation AQ=-AzQ where Q is an
average (over the time interval At) damage of separating material, Az is
its thickness. On the other hand Q(T) increases in process of damage

accumulation:
T+At o
aQ = faq(z.P(t))dzdt
T 0

If P(T) is a periodic function with the period To’ then on the steady-
state stage of the wear process

T+To ©
AUTHT H)-UTI= -Az8 + [ [a(z,P(t))dzdt=0.
T O
Hence ©
Az 1p _
— = -| a(2) dz, (8)
T
(o]
o
T+T
1 (o]
where q(z)= TJ a(z,P(t))dt.
T

If there is only surface wear (@=1) the average wear rate Az/T
determined from the equation (6) has the minimum value. If an
undersurface wear takes place also then Q<1,and the average wear rate is
higher .As we can see from Fig.l there is no great difference between Q
and 1. Hence in a steady-state stage total wear rate in presence and
absence of undersurface disruption will not greatly differ.

In the table 1 data are summarized on average rate of surface,
undersurface and total wear for processes similar to ones shown in Fig.4
(a,b,c). The data confirm analytical predictions.

Table 1
Wear rate for piecewise-constant function P(t) &=0.7
To/Tm 1 0.4 0.2 0.13 0.04
surface wear rate 100 92.5 70 76 128
undersurface w.r. 30 45 62.5 59 0
total wear rate 130 137.5 132.5 135 128
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CONCLUSIONS

1. Two types of failure process may take place depending on the
character of function q({ ,P): continuous surface wear (when failure
condition is correct only on the surface), continuous surface wear which
is accompanied by Separation of layers of some thickness in discrete

Within the framework of the model it is possible to determine
numerically such characteristics of the process ag rate of surface,
undersurface and total wear, instants of delamination, thickness of
separating layers.

2. Wear Process correlates with function P(t) (Fig.2-5). 1t is
shown for the pPeriodic function P(t) (in particular for P(t)=const) that
the process of wear may be divided in two stages: initial one and the
Steady-state one.

For the Steady-state stage  of wear an integral evaluation of
total wear rate may be obtained analytically if a({ ,P) is known.

The conclusions related to discontinuos nature of the fatigue failure of
surfaces ig qualitatively confirmed by the results (Cooper,DOWSon,
Fisher, 1991 on testing the polymer material, used for production of
Joint Prothesig (Ultra-high molecular weight polyethylene) in contact
with steel Pin( pin-disk tests) and by experimental results (Kragelsky,
Nepomnyschy 1865) on the frictional fatigue for a set of different
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