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ABSTRACT

The heat-shock, 1.e. action of stresses created by a sharp
change in temperature of a thin plate with a semi-infinite cut,
whose tip is moving at a constant velocity since the initial
time is considered. The lateral surfaces of the plate are sub-
jected to a linear heat transfer by radiation to the surroun-
dings. It is assured that the plate has initially a constant
temperature that is equal to the surrounding temperature and
in the cut suddenly appears some constant temperature that is
not equal to the initial temperature and is invariable along
the moving cut. The mathematical description of the heat-shock
is obtained by the solution of the thermoelasticity equation
with consideration “ inertisl members using th= Wiener-Hopf
technique. The main result is an expression obtained for the
gstress intensity factor in case of large and little intervals.
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STATEMENT OF THE PROBLEM

In a thin isotropic infiuite plate of 24 thickness along the ray
ofy’'=0, x'<0 there is a semi-infinite cut that starts at the
initial time to move to the region of y'=0, x>0 at a constant
velocity. The plate heats symmetrically with respect to the
middle plane by heat exchange with the medium for temperature

7~ which surrounds ita lateral surfaces. The initial tempera-
ture of the plate is equal to the surrounding temperature. In

no time the temperatureZ, arises on the edges of the cut.

It is considered that the origin of the fixed(xiy?-system ig at
the point where the end of the cut is at the initial tinme.
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The origin of the moving X,y - coordinate systenm is chose -
main at the cut tip, i.e., Y 558 6 &5

X=x-wt, y=y', ¢t=¢

I(x,y,2)=17,, Xx<0Q, y= (1)
IT(x, v, ¢)

3’;" =0, X>0, yv=0 (2)
T(x,y,8)=T, ¢=0 (3)
Sy (x,y,2)=0, X<0, vy=0, £>0 (4)
O (X, y,8)=0, -eo<x<om y=0, £ 50 (5)
Uy (x,y,¢)=0, X >0, y=0, £ >0 (6)
Y (x,y,¢)=0, Z<0 (7
3L :

%q}, £<0 (8)

The problem formulated by conditions of (1) - (3) was solved

by Zhornik and Kartashov (1988) considering an analogous ther-
moelasticity problem in the quasi-static statement. For the same
reason ““e golution for a temperatire field will be the same
and ha. the formg

T(x,y,8)-T. = Q(x,y,t) e7* (9)

6(x,y:2) 1s o function which has the following form according
to the Laplace-Fourier transformations:

8(x,y,2)= Xe"gxdx fe‘“ Ok, y, 1)t V2T =

=(T-T)e ¥ Vye &5 v «
*s(-5*ép) V57 (10)

where y=wv /24, ;é=l/_pc = thermal diffusivity of the plate;
A = its heat conduction; L = density; ¢ = specific heat;
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B=Yx*+s /(f), MEmgtempt e /18

L = coefficient of linear heat transfer to the medium em' ra-
cing the lateral surfaces of the plate.
The case of the stationary problem of heat conduction for f-=eo
(s—+0) was investigated by Salganik and Chertkov (1969) and
the problem of heat conduction for a fixed cut was considered
by Poberezhny and Gaivas (1982), Kozlov et al.(1985).

SOLUTION OF THE THERMOELASTICITY PROBLEM

The solution of the dynamic thermoelasticity problem will have
the forms: -

Gy=0G,+ &) (11)
Uy =L+ u” (12)

G, and 4T = the thermoelasticity problem for a plate wi sut
cut satisfies the boundary conditions of (5), (7), (8) and its
solution is discovered by means of the thermoelastic potential
of displacement F(x,y,t) in the x,y -co-ordinates from the
equation below:

—..67_2 ﬂ+ﬂ‘_- + AIX=
(1 dz)é,xz e (14 B(x,y, e

2
=q? [—é ol 5FJ (13)

= t—

d dxdt Jgt?

where a=1/c,=Vp(1-V)/2G = longitudinal wave slowness;
a=1/v; = glowness of the cut end; G = the shear modulu. ,
vV = Poisson's ratioj #«1 = the coefficient of linear thermal

expansion.
The normal stress which is necessary for the subsequent solu-
tion formulated according to Laplace-Fourier has the form:

&(s.y.s)= \/_,—ET G(1+\J)aérr‘s'*r° %
V- Vip [82-6%(-5-ids)?/247]
(-g-zo)l’m[‘?ifsv“ﬁ“ §('§-éd)’ ‘7’]
ne™™
Vi‘;"jz('g*isa,)% (-5-isa,)

where 70, 7=V (‘g*l])z +pt

X

e'fﬂY' =

X

(14)
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L =Vi-a/d Vi+a/d (-5+isa,) (-5 -isa) ™,
a=a/(l+a/d), a,=a/(1-a/d),
6=1/c, =Vp/GC = shear wave slowness.

The boundary conditions for 6,;, L/[P -solutions of isothermic
theory of elasticity have the form of (5) - (8), and also:

Cr (X, v.8)=-Gy (x,v,2) x<0, v-0. (15)

Fundamental Solution of the Elastic Problem. To find solutions
for 6‘; and ¢ it is considered a fundamental solution I

of elasticity theory about a stressed stete of the plate with
a semi-infinite cut moving at a constant velocity v, when nor-
mal concentrated forces f » moving subsequently at a constant
distance Z from the cut end, instantly apply on the edges of
the cut at the distance 2 from its end. The p olem as in the
pPreceding item is considered in the moving X,Y coordinates
of (5) - (8) and also:

G (X,v,2)=-F8(x+21)H(), x<O0, v=0, (16)

where &(x)= delta Dirac function; H(¢) = Heaviside function.
For solution of this problem it is used an original method
proposed by Freund (1374) for a fixed cut.

The stress intensity factor A;(#) G, (x,0,#) which is necessa-
ry for further consideration, has the form:

7y

AV L (1-am)? H(/z-az)y('é-/z)}

*(c,-4) S,(—A)}dﬁﬁ(z‘—azﬁ, (17)

5,8

whene 54 (1) =é’a?/0{~%-§ arton [472 |« (77)] x

a,a;

xjp(:q)/(?q'?-bz~j—:/]":262§) J /;jf/{ } (18)
L(1)=(1+a/a)* (1-a/d)t (a,-2) (@, + 1) ¢,
6 (A)=(1+5/d) *(1-4/a) ¥ (8,-2) % (8,+4) 1,

c:=c/(1-c/o), c= 1/Ce, G = Rayleigh wave velocity,
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Fige 1. represents a
dependence S, ({1,-) on V4

b for various cut tip ve=-
| locities &6/4 . Here
| is V, velocity of edge
g dislocation which is
moving in the positive
direction of the x-axis
/ and starts the motion
from the cut tip. The
dislocation velocity
is measered within

‘i 0sV<e, -
b/d=0 The curves for a fixed

cut 36/4=0 are given

‘ by Parton and Boriskov-
——V6 sky (1985). In general
o gz g4 a6 g8 L0 case the alteration of
¢ is an integral of

(17) that requires
calculation,
But in case of relativ-
ly large £, when
/L > &5, all the pecu-
liarities of the integ-
ral, namely the branch points of f4=a,, ¢/L, 3, excepting
the simple pole of ¢, we can eliminate, replacing the real in-
tegral %17) by a contour integral along the contour which emb-
races the cut ( a,, # ) with moving clockwise. The final
form for A;(Z) when ¢/7 > b, is:

V?TTX,(t)/V?fu—a/d)"‘ =

= l‘]gﬁ(czl-t)/[’]’z(;—:—%‘z)]yz S, (-c2),

Ye=C/a,-1.

Fig. 1. Relation betweenS(&)and Vb
for various &4/4 .
V=0,45 =) =0,25

In case of a fixed cut g—= oo the latter formula turms into
the solution obtained by Freund (1974).
General Loading. In case when the load —6’:, (x,0,¢) is applied to

the cut edges, the stress intensity factor ;5 represgenteld ag:
0 ?

4Gy, (x,0, 7)

w70 fax 25500

. o

K (x,t-2)dzr (19)

where A} (x,7) results from (17) b replacing Z with -x>0 , and
we also take f:i « Then to (193' the Laplace transform is ap-

plied:
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Ks)= jsé,i(x,o,s)ff,(x,s) ax. (20)

And then using the Parceval ratio (Sneddon, 1951)ff}d(3) has
the form:

oo

£4s)= [5G (5,0,5)4 (-5, 5) s, (21)

where Gy (5,0,5) 1is given in (14), }f_}(‘g,s) is obtained from

517) using the above-mentioned replacements and applying to
17) the Laplace-Fourier transform with parameters of s and -%&
and it will have the form:

2 : g al? (-is-a s)%
4 -t (1-4 2 .
45,5, VJ’_‘( a’) s(c;s +i8)S,((E/S) (22

The substitution of (14) and (22) into (21) comes A(s) to the
form:
£(s)=-27Aa? 6°V1+a/d/ (V" +yas)Vs S, (O)
LAV H(ngfzj)/f(g-zo)m .

S

X [}/(—5*[7)2 fpz +,7‘J vals—[g (S""' %) S', (_Lsi)}dg 5 (23)
A=C(1V) L (T.-T)(A-c/d) fca*VI*a/d VZ 7,
p=V1-a%/a* Va,s+i5 Va,s-i5,

7e=V1-6727 Vb, 5708 Vo5 -(5.

For a fixed cut @—>o (23g is obtained by general asymptotic
method (Kozlov et al.,1988). In expression of (23) integration
is conducted along the real axis embracix}g the origin of the
coordinates from below. Calcui.tion of *(s) is connected
with calculating of the contour integral in the lower half-
plane of &, which embraces the cut along the imaginary axis
from -ias till -£(@-7)
Having made the integration and proceeding to the original of
, A7(t) for large and little intervals comes to the form:

=, 8% _c S v N)1-2 € 7
x-z4 (1 d)]/aé v/yz 2LVrs(0, (0

rwah?(1+Virdz’a'k )/ 28°.
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R S (/?-%9 DN (-7 a2m
PR s = )y
X rf(k-%a*m/e %
2r —Z‘k*“—)(?—-——-*fﬂ)
x. 05 [-%k»,—}. %(,é-—%)mr; %:—é—(k— 1)%7»1;-(7*) L]-
%(k#%)nn

" JEIPIRES SO0 1 AN 3 DU N DS 2 NP TR 25
25{ 2£+4 2,é+2) m;> Z(k Z)ml,(])c] (25)

T »a*k?(1+V1+42%a%k)/28*
K=K V2 6(1+9) £ (T,- L) V3 Vima/d

’[’=»€’t/32 = Fourier criterion; 7*=]3, z2*=25,
o2 (a,b;c,aie)= generalized hypergeometrical function; [(a)=gam-
ma function. ,,
The dependence of A, on 7 for great intervals under diffe-

rent intensities of heat exchange #” and moving cut velocities
7" 1is given on Fig. 2 - 33

* }((.
e l 7"0 /W &0 7';0 -
/0'] //
16 — 16 T
g5 ///‘ 0.5
o+ —+— Y
2 A ___\_l’._ 3 A '
’__q——q—-— Vj;————d l ]\\
aé —— — -4-—1—-—\; e s ey 0’5 = :
5 5
/ r ..
34 1. a4 =
a0 100
T C TT 7
@ z 3 3 e w Z 7 6 @ 7
Fig.2. Relation between /" Fig.3. Relation between A"
and =T for various and 7 for various
y il F* .
2* = O; 2* = 01 1 ’
—_——F*=0,5 ———— z*= 1
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In quasi-static case (25) was obtained by Zhornik and Karta-
shov (1988) and for y*=g by Kczlov et al.(1988). The quagi-
tatic case fory*=0"ig realized b Poberezhny and Gaivas
(1982). also by Kozlov et al.(1985¥. As one can see from Fig.
2-3, the stress intensity factor for 7,-7. >0 is negative and

City on the dynamic strain energy-release rate for PMMA with
different average molecular weights (Doll, 1976).

There is a general cloge agreement between the calculated (Bro-
berg, 1360) and experimentally measured variation of heat out-
put with crack speed variation.

However the measured heat values are generally less than those
predicted. The possible reason for existence of an energy gap
may be that the stress intensity factor acting at the crack
tip might be reduced due to thermal stresses. It can be teken
into consideration using the results of the present work.

The consideration of thermal stresses in the quasi-static vta-
tement using Irwin models was made by Lucas (1969).
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