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ABSTRACT

The problem of rupture kineties and lifetime ocomputation of
thin elastic plates with internal oracks under isothermal high
cyclic loadi is considered. The united theory considering
the crack initiation and crack propagation stages is made up
within the framework of Continuum Damage Mechanics principles.
Fatigue lifetime is defined through the moment when structure
is broken into some parts. Some fatigue problems for thin
plates with internal oracks are solved.

KEYWORDS

Continuum Damage Mechanics, rupture kinetiocs, fatigue
lifetime, plane problem, internal crack.

INTRODUCTION

Investigations of the fatigue crack growth are known among
quite early researches in Practure Mechanics. During the 1las

twenty years many of experiments have been done and nowadays,
two approaches of principle difference have been developed in
strength theory for the fatigue life prediction of structural
components.

The first engineering one has been based on stabilised
stress-strain state analysis using parametric relations
containi number of cycles up to destruction [Serensen et
al., 1972%. As a matter of fact, the lifetime computation in
this case is carried out on the crack initiation time in the
most stressed point. The crack propagation stage is out of
consideration and results therefore are always appear to be
below the real value [Golub and Panteleyev, 1992].

Another approach has been based on modelling of the fatigue
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rupture kinetics. The linear and nonlinear Crack Mechanics
methods and Continuum Damage Mechanics concepts have been
spread mostly in that approach.

The linear Fatigue Crack Mechanics is virtually generalization
of the Griffits—Irwin approach. Fati%ue crack growth rate is
obtained from empirical and semiempirical formulas received
due to compact specimen tests covering the rate dependence
from stress intensity ocoefficient range [Cherepanov, 1974;
Panasjuk et al., 1977). To account the crack nucleation stage
8 characteristic function determined from additional tests %s
taken into consideration [Andrejkiv, 1982].

In the nonlinear Pati e Crack Mechanics the (0D (Kaminskiy,
1990) and J-integral Vardar, 1982] are in uge as "moving
force". In thie case the crack nucleation stage can not be
also predicted without additional hypothes. The crack
nucleation conditions and crack propagation up to the length
could be used are out of

An approach based on the
Continuum Damage
Mechanics conception
[Kachanov, 1974] seems to
be more suitable in
solving such kind of
problems. According to
this approach the sgource
of crack growth are
microdefects distributed
over whole volume and
J their density is maximal
PLQJ near the crack tips. Some
problems have been solved

T

X within the framework of
j f f i 1 1 f g the Continuum Damage
o> Mechanics [AsEaIJev.
; 19733 Murakami e al.,
Figure I. 1988; Bolotin, 1990].

The subject of thisg paper 1is to construect the theoretical
model of fatigue rupture considering two-stage character of
this process.

FATIGUE RUPTURE MODEIL

Let us consider the rupture problem of thin isotropic plate
(Fig.1) subjected to uniaxial cyelie load Gm at infinity. The

orack surfaces are supposed to be unloaded. Neglecting inertia
forces, the stress tensor components 611 at any point of the

plate with radius vector 1 may be represented as
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Here ﬁaqv 18 an equivalent stress; GTJ. 0;5 are mean and

amplitude components of a cyoclic stress tensor: Fre] is a
function of stress tensor invariants which is dependent on the
plasticity condition: ay is the yield point of the material; n

is the cycle number of load change (n=ft).

Let us assume that the extremal valueg of the maximal stress

tensor components ar"= a:+ a: and a: a:— a; follow each

other quite often (f>10Hz). In this case the most part of the
plate material is " deformed lhuxukelaaéioally and fatigue
rupture is brittle and multicyclio (naz10 )

We oconsider the orack as a sharp tipped slot. Under external
load action the plastic zone appears near the orack tip. Write
210 for initial crack length, label current orack length by

21r, and write 1 for plasticity zone length. For the A we have

g2 1.
g 2

y

Stress distribution near the orack tip let us define in
accordance with model of Irwin of small plasticity zone in
which all nonlinear effeots are concentrated. In this orack
tip area the stress ay (z,0) 18 supposed to be constant and

y
equal to oy. If (x,0) point 18 located outside of this zZone,
dependence of ¢ y on r coordinate appropriates to the stress
distribution rule for the normal opening crack in 1linear
elastic material. In this case we can write

3 (z,0)= ay[ H(2-1.)- H(z-1,- \(1,) ) } +

a -y
s — V/—: il z-1.- 101, ]. (3)
ve =i

Here Hl+] is Heaviside step funotion. Pig.1 shows the graphic
interpretation of equation (3).

As a "moving force" of orack propagation let us oonsider the
damafe acoumulation process. The ability ofr solving dynamic
roblems of Crack Mechanios was principally formulated in
FKachanov. 1958]. Proceeding from the automodel assumption,
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for the damage measure W. we have the differential equation

3 Xy Hr3d (X gk
eqv eqv

a6 (X,n) }
2 i (4)
i

an £

r
= 0 l'
L 1 -w.(tn)

Here Cf.k are the coefficients which reflect ratigue
properties of the material.

Let us consider the fatigue rupture phenomenon as a two stage
brocess consisting of nucleation stage and crack propagation
stage. The crack propagation sta§e we will model as a motion
of certain rupture edge. The mov ng condition or the rupture

[ -
O Xn] = (5)
or taking equation (4) into consideration as
" ok 1 -
c.(1+k) [ o [aequn,r) Jav =1 (6)

Here Gl f(n)]= f(n) Hif(n)l; Xn— radius vector of the moving
cérack tip.

CONSTITUTIVE EQUATIONS OF FATIGUE RUPTURE KINET1CS

General relation for halt length l. of moving fatigue crack
can be written as

IT=n
_ ) ] 7
Zf(n)- !fo L aeqv(xn't)’ wf(xﬂ’t) 1’ i

Here Fr+j ig functional of loading history and damage
accumulation process.

To write relation (4) 1in case of ocrack with arbitrary
orientation, equations (4)-(6) should be solved with
equilibrium and compatibility equations. For the straight
crack shown on Fig.1 and its moving direction coinciding OX
axle (§R= (r:lr,O) )» the resolving equations may be reduced

to
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an "I ¢ W (z,n) | (8)
ur(r,d): Q, vr
W r.n)=1, z= lr(n)

~sharao W.(r,n) is changed from some value to 1 for any point ot
0X axle.

substituting (3) 1into (8) and integraling differential
equation in (8) 'we obtain relation

ik {o* 1*
fa [ ez | = (1em) C, [ — | x
n L (1) 2
XJ £ 1[ [ stncomn) 1 ar, (9)
N NI ENTIR I ]

which ties the stress state near the crack tip and damage
value at the point with coordinates (z,0) at any time moment
n. Here assumed that the plastic zone is concentrated in the
orack tip, and ¢ =0. From equation (9) considering (5) we

m
obtain relation for fatigue crack length lr depending on cycle
numbers n

k
‘ (0, 1V =y 1, 12 ot 1
I-C1+R)C_|—2=] | | | G*istn(2nn)ldr =
W3 Jo L1 n) rr)- g L ]
. (10)
1T (0 2

(o
(1+R)C -2

]l G {stn(?un}}dx
W2 Jmalt it cr)im o))

Here n, {3 the time when initial crack starts its moving.

To obtain analytical solution of the equation (10) we wuse
approach suggested in [Astatjev, 1979]. For fatigue crack
¥rowth rate we finally have

dl 5 o
L -1+ 1y 03 ¢ |
k

(0 )* 1_c*[ stnconn) 1 (11)
in a £ J

L
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Here from follows that fatigue crack growth rate is the power
function of stress amplitude a., depends on current crack

length l‘_and on yield stress 0 . The structure of equation

y
(11) obtained theoretically is not in confliot with well known
experimental data.

THE MAIN MECHANICAL EFFECTS

In accordance with equation (11) and rupture edge mov
criterion (5), the influence of damage distribution 1in fron
of orack tip (Pig.1) on fatigue orack growth rate is taken
into account. In particular from (5) we have

dlr au‘_/ an
= - (12)
dn aur/ ar

Herefrom follows, when w1 then fatigue orack growth rate
converges to infinity and influence of ® r(x) is decreased.

Special feature of equation (11) is also that fatigue orack
growth rate is a function of range of stress intensity
coefficient AK. In this case we have

dl k
dTl.: [1+—7- c, _(AK) - G“{ stn(2an) } (13)

onk [m(zr)]ﬁ-l

-y

where assumed AK= 20'/1!1‘.. Equation (13) is the extension ot

known empirical relations establishing dependence of crack
growth rate on the of stress intensity coefficient. 1In
particular, ir 1(1‘_)=1(10), from (13) considering (2) for

brittle materials we can obtain

e (.1 [ ax )" [0 3
—*- [1,;] & l "‘J l.—] [zo] e [3tn(21!n)] (14)

& x d.

and for plastic materials when A depends on the ocurrent 1
value

£
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here k>2. Increase of index k of the AK base while material
brittling is also confirmed with experimental data
[ Parton, 1990].

RUPTURE PROCESS OF CRACKED PLATES

To solve the problem of fatigue crack growth rate calculation
in thin plates on the basis of equation (11) it is necessary
to have material parameters Cr and R which characterise the

material resistance to fatigue rupture. They may be obtained
due to fatigue tesis of smooth oylindrical specimens. Every
points of such kind of specimen are of equal strength and
incubation stage finish coincides with the momen when
specimen is breaking into parts. So that for n.=n, Ifrom (10)

we have

_ [ k fo.s k 1
n.= 1/L (1+R) Cr (ay) Jo stn”(2%n) cln_I (16)
Here inte ting is in effect only for tension half cycles. In

logarithmic coordinate system, line (16) approximates rightly
the experimental data. Parameters C . and R Jjust define the

line location.

Dependence of crack frowth rate and crack length on cycle
number is shown on Fig.2 as an example. Results obtained in
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Figure 2.

accordance with (14) and (15) relations for the plate of EP718



alloy at 20° with initial crack halflength l,= 5X107°m, 1in
9,=500 (1), 400 (2) and 300 (3) ¥Pa. Line obtained in

accordance with (14) is dashed, with (15)-s01iq. Consideration
oI dependence on plastic zone length comes to decrease of
fatigue crack growth rate and lirg%ime increase. It plastic
20ne length converges to O crack growth rate increases up to
intinity. 1n this case the moment when crack startg its moving
coincidesg with total destruction moment like in case of
homogeneous Stress state.
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