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ABSTRACT
The principle of maximum energy dissipation rate - maximum excess of the energy flux
into a propagating crack tip - is introduced as an energy criterion for crack dynamics.
As a result, the upper limits of the crack velocity in perfectly elastic and elastic-plastic
bodies are obtained. It is found that the theoretical maximum crack velocity in an
isotropic elastic body (in the first mode of crack propagation) is approximately equal to
half the shear wave velocity.
The comparison of these theoretical results with some experimental data shows that
under ordinary conditions a crack propagation looks like the "maximum dissipation rate”
process.
It is shown also (using some physical considerations and variational technique) that the
principle of maximum energy dissapation rate is possible to consider as a consequence of
the Hamilton’s principle.
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INTRODUCTION
The energy criterion for fracture consists of the comparison of two quantities: the macro-
scopic energy release G caused by a crack propagation (in elastostatic - the energy release
under a crack position variation) - with the surface energy by GRIFFITH (1920) or an
effective surface energy by IRWIN (1948) and OROWAN (1955).
A dynamic problem of the crack propagation can be solved if the effective surface energy
is constant or, in any case, is a function of the crack velocity. In this case the use of the
energy criterion allows to obtain, in principle, the crack’s velocity as a function of time.
However the experimental data show that the effective surface energy is not a constant
and what is more there is no connection between the effective surface energy and the
crack velocity.
The numerous experimental results which concern the crack velocity limits in brittle
materials are well known. The survey of brittle crack velocity are represented by RAvVI-
CHANDAR AND KNAUSS (1984). This survey is very important for us and it is shown in
Table 1 (the ratios of crack velocities to other two characteristic velocities is not shown).
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Table 1. Survey of brittle crack velocities by RAVI-CHANDAR AND KNaAuss (1984)

Material Author v v/e, v/eg
Class  ————F7—— 2 Ve v/ep

lass Bowden 0.22° 042 053]
Edgerton 022 (.43 0.47

Schardin  0.22 (47 0.52

Anthony 022 .60 0.66

Plexiglas Cotterell 035 (.54 0.58
Paxson 0.35 058 0.62

Dulaney 035 0.58 0.62

Homalite-100 Beebe 0.31 031 0.33
Kobayashi 0.345 0.35 0.38

Dally 0.31 035 0.38

Smith 031 038 0.4]
9 038 041

The rf%sults show that the crack velocity (under ordinary conditions) do not achieve the
Rayleigh wave velocity cg. These results contradict the theoretical result obtained by

the energy flux into the Propagating crack tip.

.Another result should be in a "weakly bonded plane” in which the energy absorption
is strqngly limited. It was pointed out by RAVI-CHANDAR AND KNAUSS (1984) and
investigated experimentally by LEE AnD KNauss (1989). In this case the crack velocity
achle}'ed the Rayleigh wave velocity.

The Interesting results have been obtained recently by FINEBERG, GROSs, MARDER
AND SWINNEY (1991), (1992). They discovered an almost regular roughness structure
of the crack surfaces and the high frequency oscillation of the crack velocity in poly-
methy]methacrylate. This phenomena (the non-regular roughness was observed earlier
repeatedly) arises when the crack velocity is high enough, especially when the crack ve-
locity :flchieves its limit. The energy release - energy flux into the propagating crack tip
Per unit area is almost constant when the crack velocity increases. The energy release
mcreflses when the "average” crack velocity is constant (when it is equal to the crack
veloc.lty limit: about 0.5 cr). The fact that the energy radiation as an effect of the crack
velocity occilation was pointed out by Ricg (1978). A periodical varibility of the sizes
of the fracture brocess zone as a result of the crack velocity oscillations was pointed out
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media such as chains, lattices, composite materials and rock joints by SLEPYAN (1981),
KULACHMETOVA, SARAIKIN and SLEPYAN (1984), MICHAILOV and SLEPYAN (1986),
SLEPYAN (1990) - demonstrate a number of effects which cannot be discovered using
the classical model of non-structured solids. The energy radiation from the front of
fracture is the most important phenomenon. It can be heat transfer, sound emission or
high frequency seismic oscillations depend upon the scale of the structure. This energy
outflow non-monotonically depends on the crack velocity and increases boundlessly if the
crack velocity tends to the critical velocity.
I'he experimental and theoretical results show that the effective surface energy is formed
in a brittle material under influences of some "micro” factors such as the structure of
the medium, the roughness of the crack surfaces and the crack velocity oscillation. All
these factors cause a radiation - high frequency waves which carry energy from the crack.
The roughness increases the crack surface area, and this phenomenon also increases the
effective surface energy. The roughness and the crack velocity oscillation, in their turn,
depend on the structure of the medium and on macrolevel factors such as the energy
release (() and the "average” smooth crack velocity (v). Thus, we have here the coupled
problem of macro - micro processes interaction.

THE CRITERION FORMULATION
Consider an elastic body under given external forces. A dynamic problem is completely
defined if the boundary of the body, the boundary and initial conditions are given.
However, in a fracture the boundary is not known in advance: an additional part of
the boundary is formed by the crack propagation, and this process is out of the elasticity
framework. If we want to consider the problem on the macrolevel we need a criterion to
obtain the velocity and the trajectory of the crack.
Let G be the energy release per unit area of a dynamic crack, let N be the energy flux
into the propagating crack tip: N = Guv, and let N. be the excess of the energy flux:
N. = (G = 2v)v, where 7 is the effective surface energy for a quasistatic growth of the

to the maximum energy dissipation rate - the maximum excess of the energy flux into
the propagating crack tip per unit time. We also use the Griffith’s (or Irwin - Orowan’s)
criterion but only as the lower boundary of the energy release per unit area. So, we
assume that the crack velocity vector v is defined by the requirement
dN
NA(Vv)=N =290 = N az P 2y (1)

ifG=N/v>2y( =| v ). In the opposite case (¢ < 27 the crack does not propagate.
Let the criterion (1) be satisfied by the equality v = vo, and the equation

dN

-9

dv (2)
is satisfied if v = v.. We assume that the derivative dN/dv is a monotonous decreasing
function (that is what it is under ordinary conditions, see the book by SLEPYAN (1990)).
[n this case vy < v,. However, vy — v, if the energy flux NV increases. Really, the energy
flux NV can be represented (see Section 3) in the form N = f(v)g(t), and the equation
(2) follows from criterion (1) if g(¢) — 00. So, we see that v, is the crack velocity limit,
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and to obtain this limit it is possible to use the equation (2) for all energy flux into
propagating crack tip.
The extremal dissipation principle was used earlier by NIKOLAEVSKY (1987) for the
investigation of some aspects of crack growth in a visco-elastic material but without any
variation of the crack velocity.
We also consider the crack propagation in an elastic-plastic body. In this case the rate
of the plastic strain energy is required to be maximum. The same is required of the
maximum elastic energy release rate.

THE CRACK VELOCITY LIMIT IN AN ELASTIC BODY
Consider the generalized plane problem for a semi-infinite straight running crack in an
unbounded elastic body (the initial conditions are zero). The velocity limit v is obtained
as a value which satisfies the equation: The results of calculations of the ratio of crack
velocity limit to shear wave velocity for the fracture modes I and II are represented in
Table 2.

Table 2. The Crack Velocity Limit

Poisson’s ratio 0 0.1 0.2 0.3 0.4 0.5
cr/c2 0874 0893 00911 0.927 0.942 0.955
v/ ¢, (fracture mode I) 0.476 0.492 0.507 0.517 0.520 0.482
v/c, (fracture mode 1) 0.539 0.568 0.601 0.638 0.674 0.711

The theoretical results for fracture mode I are very close to the experimental results (see
Table 1): the theoretical ratio for glass (v = 0.22) : v/cp = 0.51, the average experimental
ratio v/c, = 0.48. The same ratios for plexiglass (v = 0.35) are 0.52 and 0.57 respectively.
The experimental results for Homalite-100 differ from the theoretical ones somewhat more
(0.52 and 0.35 respectively). Perhpas, the decrease of the velocity limit is the effect of
the viscosity and plasticity influence which is not taken into account in the theoretical
consideration (the plasticity influence is estimated below). Note here that a small change
of the crack velocity (in comparison with the velocity limit) leads to a smaller (second
order) change of the energy dissipation rate, because the limit corresponds to maximum
rate.

The theoretical results for fracture modes 11 and III predict higher values of the limit
crack velocity and shear cracks are expected to be faster. This result is confirmed, to
some extent, indirectly from data for the shear crack velocity. Some results are pointed
out by BEROZA AND SPUDICH (1988) using two methods of the natural data estimation.
It turns out that the shear crack velocities v = 0.7¢; - from one method and v = 0.8¢; -
from another method are the most suitable for the natural data description (Application
to the 1984 Morgan Hill, California, earthquake). See also HEATON(1990).

Consider for example a transient problem for the fracture mode I assuming the surface
crack loading is a constant:

o = const H(t)H(I(t) — )

where H is Heaviside’s function, and /(t) s the crack tip coordinate. Initial conditions are
zero, [(0) = 0. If the energy dissapation rate criterion is in force the motion of the crack
as follows. At some time t = to > 0 the crack motion begins, its velocity is somewhat
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smaller than the velocity which satisfies the Griffith’s criterion, then the velocity tends
to its limit (Fig.1).
ELASTIC-PLASTIC BODY

('onsider an elastic-plastic problem for fracture mode [11. We assume for simplicity that
the plastic region is a narrow zone in front of the crack - we use the well known foundation
by BARENBLATT (1959), DUGDALE (1960), LEONOV (1961) and PANASYUK (1968).
We consider the self-similar problem for a semi-infinite straight crack in the unbounded
elastic body (the plasticity appears only in boundary conditions). We have the boundary
conditions (y = 0) for the half-plane r,y (—2o0 < T <0, Y >0)

7, =0 = [—pH(vt —1)+ kH (& — vt)H(at — )] H(t) (x < at) (3)
u, =u =10 (x > at)

where z is the third axis, —p = const < 0 is a shear stress which acts on the crack surfaces

(r < vt), k = const > 0 is the same stress but in plastic zone, a is the velocity of the

plastic zone front, and v is the velocity of its internal boundary - the crack velocity. The

initial conditions are at zero. We also have an additional condition: there is no energy

flux into the moving point x = at.

The results of calculations of v as a function of )\ are represented in Fig. 2.
CONCLUDING REMARKS. THE PRINCIPLE OF MAXIMUM EN-

ERGY DISSIPATION RATE AND HAMILTON’S PRINCIPLE

Consider, at last, a possible connection of the principle of maximum energy dissapation

rate with the Hamilton’s principle. We have the equality (see FREUND (1990))

-_— = (7' 4
o =" )
where L is a lagrangian of the crack dynamic problem, and !is a crack length. We obtain
from (4) omiting a possible item which is independent on l.

g, = /0' Gdl = /: Nt (5)

The lagrangian L is independent on the instantaneous crack velocity v(t), and it is
impossible to obtain this velocity by the Hamiltons principle using the lagrangian L
in the form (17). To overcome this difficulty we take into account the fact that the
macroproblem foundation is possible to consider only as a long wave approximation.
Some small time-interval T exists which we cannot divide on the macrolevel. (Otherwise
we have to include the discription of the microphenomena into the lagrangian.) Therefore
the introduction of an averaged lagrangian is justified. The averaged lagrangian:

. 1 b 17t
j == E(l,(f)+L(t—r)):/O(,([1—; " Gedt ~
/1('11 17'\'(! )ov M 6
~ 7 s s sU)y U= =77
b T2 dt (8)

This averaged lagrangian depends on instantaneous crack velocity v. The variation of
the action integral gives us:

t2 _ t2 rdON
5 Ldt:/ G+ LL%0 61t 7
t t G+ 2dt dv jabd (7)
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"et this variation leads to the same result as above.

ta _ rt t2
o Ldt=6[" Ldt = / Goldt (8)
t ty ty
So, we require the energy release to be independent on the (small) time-interval on which
the average is obtained. We have to believe it using the averaged lagrangian because the
energy release is exactly defined on the macro-level.
We obtain from (7), (8):
d ON ( AY ;
— =, N SN (
it oo ae o v
At the same time:

IN oG
m:(,:‘}-l'ﬁ‘—'(r——’z“, (l"’o) (10)
and hence:
o _,
o= =2 (11)

We see now that the principle of maximum dissipation rate (1) is a consequence of the
Hamilton’s principle if the above physical considerations are taken into account.

tional principle should be used to obtain a relatively extremum.
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Fig. 1. Crack veloaty based on Griffith’s criterion (1),
crack velocity based on criterion of maximum en-
ergy dissipation rate (2). and the crack velocity
boundary (3).
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Fig. 2 Crack velocity limit in an elastic-plastic body
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Fig 3 Crack propagation in an initial stressed elastic strip
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