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ABSTRACT

Three new modesls of deformable solids are being presented,
which take into account the accumulation of micro-structural
damage in the material, in the process of dynamic deformation,
the influence of damage to a3 stress-strain state and the
iemperature effects. Two models ( the damaged and porous
thermoelastoplastic  media) serve as a escription of
deformation and the ductile failure of metals and explosives.
These models belo 0 a class of models with internal
variables. The third model eXplains the brittle fracture of
materials, which can be interpreted as the process of the
formation of a large number of micro-cracks 1in different
directions, as a result of which the 1sotropic material
acquires anisotrogy. The entropy criteria of macro-failure are
pbroposed. The testing of the models and the numerical solutions
OT some dynamic problems are discussed.
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INTRODUCTION

The evaluation of the life of materials under intensive
short-term stress 1s one of the basic problems of the mechanics
U s0lids. Dynamic fracture is a complicated multistage
Jrocess, Including the sap earance, development and confluence
o microdefects and the ormation of embryonic micro-cracks,
thelr growth right ug Lo the break-up of the bodles with thelir
-¢ parts. Three basic types of dynamic

racturs  can be s3ingled out: ductile, brittle and
adlabatic  shear faillure. Ductile fracture, observed under

normal conditions in metals, solid rocket fuels and exglosives,

1spersed

spherical micropores under plastic deformation. A large
mumber  of  orlentared, coin-type micro-cracks, capable of
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wing in the process of deformation are Tormed in the brit
%?gcture Of the material. Fracture of this type can tég
observed in berilium, concrete, mineral rock and certain types
0f steel. The mechanism of shear failure 1s observed under h gh
sgeeds of deformation, for example, when a "plug" 1s forced out
oL the target. In this case the resulting tear is concentrated
in thin layers with a thickness of up to several tens of a
micron, are positioned along surfaces with maximum tangent
?§gssses. This 1leads to the development of intensive plastic

Below, three new models are dlscussed: two models, describe the
initlal stages of ductile fracture (formation and growth of
microdefects) and the third models for brittle fracture. These
models are geared towards modern usage of the modelling of
nonstationary non-homogenous processes or deformation and
fracture of bodies in a complex stress-straln state.

MODELS OF CONTINIOUS DUCTILE FRACTURE

Model of the damageable thermoelastoplastic medium. This model

belongs to the class of model media with internal variables, in
which additional scalar or tensor variables of state, that
characterise damages are introduced (Coleman and Gurtin, 1967;
Kondaurov and Nikitin, 1990 et al.). An understanding of the
measure of damage to material was first introduced in the works
of Ilyushin, 1967; Kachanov, 1958; Rabotnov, 1966. The scalar
internal variables of state w 18 used for models of the
damageable media (Kiselev and Yumashev, 1990 b). This describes
the ‘appearance and growth of the damaged material in the
deformation process(w varies from 0 in an undamaged material to
! In a complete fracture). Let it be assumed that the full

deformation €44 can be expessed In the form of the sum

81j=8;j+8§j ,» Where E; - elastic deformaticns and Sij plastic
deformations, while: =0.

b
kk

Returning to the heat equation and the second law of
thermodynamics, expressed in the form of Ene chfu1 - Duhan
nequality me bt D s} ausius-Duhame

- ] _ 8F p _ oF. 1=
nT (5013 5D )le o - 5dlvq, (1)
€13
d=dy +d, +d, > = ~ g2 el
M P dT g, dM kOlJ pdpp_) ij
ap = - p- 2. i e s e
= - ] = - - y O = ] = y
F ) dT T i3 pds? n aT
where U - specific 1internal energy, o -density,, Gij -
components of the stressed tensor, 4 - ne=at Tiow, E - specific
entropy, T - absolute temperature, dy~ mechanlcal dissipation,
dp- dissipation of contimwum Tracture y  dp- thermal
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dissipation, (Oij— p—gg—) - tensor of "active" stress.
ost .
1J

In the Tframeworks oI the 1linear thermodynamics, with
assumptions of small elastic deformation and the nonne%ativity
of each of the components of functions of dissipation;
introducing a specific heat capaclty under constant stiress C»

accepting that module K and u depend on the variables of damage
w in the following way:

K = K0(1'—‘U)y Moo= ‘P'(-)K}_w)p '\Z:‘
where KO, Ko are the modulii cr the undamaged material,

assuming that the behavior of the material can be described by
a rlow equations with Mises' criterion of plasticity, and that
the variable of damage w 1s exgressed by a kinetic equation of
the Tooler-Butcher type, finally we end up with the following
system of constitutive equations:

w
A .
, - e o —— M
0 "= Ky B~ gD+ 3 J 55~ v,
o]

(Tié)v + xwié = 2 - %ékkéij), Tiémi; % % ¥,

pcof +ea OT = Tijegj + A+ divg, (3)

® = B(0 - 0, )™ H(o - a,), T;j=TiJ/(1—w), o =0/ (1-w),
where 0=0,,/3, H(x) - Tfunction of Heaviside, B, m, o -

constants of the material. The symbol v designates Jauman' time
derivation. Here,the yield strength Y and the shear modulus
dﬁgfnd on temperature, pressure and other variables of state
(

kins, 1984).

Model (3) eneralizes the Prandtler-Reuss model of
elastoplastic flow and takes into account the anisotropy of
plastic deformation (In the case where I'#0), the accumulation
0f damage in area of intense tension, the effects of the
processes ot the deformation and accumulation of
micro-structurial damage, and termal effects. Model (3) is used
to express the behavior of metals.

Model of porous thermoelastoplastic medium. The model of porous

thermoelastoplastic medium (Kiselev and Yumashev, 1992 b) is
8 sted to explain the dynamic behavior of solild rocket fuel
and exploslves, which even 1in their initial condition have
scattered micrgpores.The system of constitutive equations of
the porous medfum turns out to be analogous to that of the
model of the damaged medium (3), if instead of the variable of
damage w the varlable of porosity a (O<a<!) 1s inserted -
volumetric total contents of micropores (the volds 1in the
materials). As a kinetlc equation for variable a the equation
of the ductile growth of pores is used, taking into account the
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Influence or 1tg gases (Kiselev and Yumashev, 1992 a) :

! (g-c* -g_ -

a/a = __Iﬁ_l H(o-0") + gz%- H(o -a), (4)
t_ _ 2 'y K ~. 2

g = 5Y Ina - Pyld7a)™, o= ?Y'lna - po(ao/a‘)k :

Here 7 1is the dynamic ductility of the material, a,- initial
porosity, Py~ Initial pressure of the gas In a pore, k - index

oI the adiabatie constant of the gas. The first term in (4
2Xplains the process of the expansion o Soond
TtVs piasiie gwellingf pansion of micropores, the second

Criteria or macrofracture (the origin of cracks - the new free
S?rface In the material) 1s the condition for the achievement
0T the specific dissipation of maximm meaning D, (Kiselev and

Yumashev, 1990 a,b):
t

X
_r 1
D =f 5(dytdp+dy)dt = D,.
0

Here t,~ time or fracture, D,- the constant of the material,
cXperimentally defined.

QQQQ@EQ}Q&LLQQ_Qgrameters of the models. The

the flat collision of two plates with results of

numerical
mogelling (Kiselev and Yumashev, 1990 3,b). The deformation
32 Sotropic parameter I can be defined from the experiments of
f,nsion—pressure or normal shear (Bykovtsev and Lavrova, 1989).
Qn future calculations let =0 given the absence 0f necess
Xperimental data fop the 1investigation of material. 1In
%art%cular experiments (Kanel' et al., 1987) for the break-oft
9I‘ac ure of a 10 mm titanium alloy targets which impact from
= mm  aluminum flates with a wide range of velocities.
Numerical 1invegt tion was carried out With an adiabatic
approach. The significance of the limit of the strength D, =175

KJ/kg was defined for titanium alloys.

For the definition or agrggs, Jhermoelastoplastic model

€ 1lmpact-compression of micropores
#ggselev and Yumashev, 199p a) 1s used. This is used to dgfine
L Interactive barameter A of deformation and. micro ore
svolution (A 1is replaced by A in the equation for the model of
pgrous media). Firstly the problem of {%e adlabatic compression
ol 1ndividual ‘micropore Wwith 1initia]l Inner-radius a, and

external radius bD » With or without &as was solved. External

TeSsure was defined as the followi With T represent the
guration 0f the process: P(t)=P_H{1-t). From‘p the é%%rage

temperature of pores when t=1T can be defined: Tav in the casge

(o]
where a# 0 and Tav in the case a
temperature AT = T_ - %

avr acr asr
Ay A Y

material

o= 0. The increment of

was attained due to the porosity of
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the individual cell. The problem of dynamics of micro OTe can
be solved with a one-dimensional %Pproach. The gas in the pores
1s considered ideal. As constitutive squation for the material
0of pores the equation for thermoelastoplasticity 1is used
(Perzyna, 1963) with the same coefficient 0f dynamic ductility
n, Wwhich 1s found in equation (4). Then the problem of plate
collision with velocity VO 1s mumerically solved. However in
the plate of the investigated material initial porosity a =
(ao/bo)3 is Introduced. The velocity of collision V, and the

thickness of the striker h are selected so that the surface
pressure equals P, and the duration 7. The selection of
arameter A must make sure that the increment of surface
emperature equals AT, ,. For VRA-fuel we managed to attain the
value A: A=5 kPa's. The results of the calculations correspond
to experimental data and  the calculations of other
Investigations.

MODEL OF BRITTLE FRACTURE

In the case of brittle fracture, a thick net of arbitrary
directed microcracks are formed in the material. As each crack
has 1ts own direction their accumilation leads 1o anisotropic
conditlon of materials.The basils of the given model 1s the ides
that represents the breaking-up material as a variable, e=lastic
module (Zelensky, 1985).

Originally the continuous medium 1is represented as one with
increasin§ crackablility. This 1s modelled on the increase or
the coefflcients of the malleabllity matrix. For a uantitative
description of malleability matrix changes a subsidfary problem
1s concerned: in the continuous medium With malleability matrix
Aij (here the usual definitions for plane derormation are used:

= = =2 i = — . W o
€1=€11s =5, €6=C845, 04=0,,, O5=055» 0g=0,5; HOOk's law is
written down thus: ei:Aijoj' 1,J=1,2,6) the system or N cracks
with length of 2z and parallel to the ¥, axils 1s Introduced.

"Effective” elastic module have 1o be round. Here effective
modulli are called quantities Aij' connecting average

deformations €; and average stresses 0; oI cracked media: g;=

Kijoj' The average deformation of z material element consists

0f elastic deformation and the deformaticn due to eracks:
A —a® il . I o1has
eij‘eij+ 5 é(niLUjJ+nJ[Li}’*°'
where n,- components of the vector normal to the crack; [Ui) -

components of displacement leag under transformation through
the crack. Therefore, mallea 11ity of cracked media A

consists of malleability or initial media Ai‘ and additionél
malleabllity Hij' which 1s represented by means or displacement

leaps. These leaps are defined based on the work of Paris and
Si,” 1668. Consequently we can  conclude for aeach individual
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°rack, length 2a, parallel 1o the X,-axis:
)

1 = 2/3“—x;-A11£GEIm(p1u2) + OBLm(u1+u2)],
(U1 = -TVaE—XB‘& lo,Im(1/, /
U, SYAT-X7 Ao, la, u1+1/u2) + 06Im(1/u1u2)].

Hear O;- active stresses; My — I'OOTs O characteristic equation

for this anisotropic mediz. In conclusioc w a
additional malleabi 1ty 1in the folloﬁ&ng way):r1 © can express

H62=EA11Im<p uegﬂ, H66:%A11Im(u1+u2)0, H11=H12=H21=H16=H61=O.

g

For the self-consistency of this model we have to
Kinetic cquation for Q. The constants of this equat?gg ;?5
defined rrom EXperimental data ot one-dimensional tension.

In extreme cases (model of 1deal brittle media) thi

In extr se ( S mo
Iully corresponds to the results of the work of gMainchen ggé
:E?K,_!Qb?). The model of brittle fracture was realised in the
problems of interaction of elastic waves with hole.
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