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ABSTRACT

As most operating processes possess a non-stationary character the paper
aims at the computational assessment of influence of non-stationary process
properties on fatigue life. Two kinds of non-stationary processes were
used, viz. the most frequent Gaussian white noise with a time dependent
mean and/or variance, and the Weibull white noise with time dependent
parameters. These processes were simulated in real time, then analysed by
the one- or two-parameter Rain Flow Method and the macroblocks obtained
were used for the fatigue life estimation according to a few hypotheses.
The results are mutually compared and some qualitative conclusions are
formulated.
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INTRODUCTION

Permanently increasing requirements to higher performance and lower weight
of machines force designers to consider factors of the true operation which
were neglected before. One of them is the non-stationary behaviour of
operating random processes manifesting itself in the majority of practical
situations. Thus the aim of the present paper is to gain information on the
computational influence of non-stationarities of some typical random
processes on the fatigue life and to propose recommendations that could
help in practical dimensioning against fatigue under operating loading.

NON-STATIONARY RANDOM PROCESSES

There are various definitions of non-stationarities of random processes
(Cacko et al., 1988) based on various statistical moments. As a result some
process parameters are time-dependent deterministic functions, practically,
e.g., a probability density function f(x,t) or power spectral density
S(f,t), or both of them. Considering, however, that data concerning this
area of fatigue are very scarce and, moreover, depend on many other
parameters, it is indispensable to limit the investigation to a certain
class of non-stationarities. Following this idea, in this paper we shall be
concerned with the fatigue life assessment under a non-stationary random
process with a constant power spectral density S(f,t) = const. and
deterministic time-dependent probability density function (PDF) f(x,t)
(non-stationary white noise). This type of processes can be met, e.g., at
vehicles operating outside the component resonant frequency ranges.

Despite this restriction there is still a variety of white noises with
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various PDFs. Here we shall present the results for two representatives
described by the Gaussian PDF in the form

1

FO0t) = == exp(-[x - u()1%/ s%(t)) (1)
¥4

and the three-parameter Weibull PDF in the form

OO0 = A Ix - a(0)]™Vexp(-A(t) [x - a()]™O*mcty + 17 )

where u(t) and s(t) are deterministic functions of time t, representing the
mean value and standard deviation, resp., and A(t), m(t) and a(t) are
deterministic functions.

The choice of these two PDFs is not incidental but reflects their
frequency of occurrence and importance in solutions of practical problems.

SIMULATION OF NON-STATIONARY RANDOM PROCESSES

Using the linear transformation

Y(O) = [x = 4 (t)]/s(t) (3
for Eq. (1) and
Y() = A(t) [x - a(t)1™V* (m(t) + 1 (4)

for Eq.(2) with the corresponding Jacobians

J,=s(t)  and I, = A [x - a(t)]™®,

resp., we get the PDFs

1

£ = £y = —= exp(- y¥/ 2) (8)
%

and

Ep i) = £ (x,t)/g = £.(¥) = exp(-y). (6)

It is.obvious that the resulting processes are stationary with a normalized
Gaussian PDF f;(y) and a normalized exponential PDF fe(y), resp.

. The real time simulation algorithms are then obtained using the
inverse transformation of Eqs. (3) and (4), which in the discrete form
yields

Yo TS T+t <))
and

m(ti) + 1 =f
X = a(t) + Imte;)e1)7t 8
o = AL ® e A (8

where s(t,), u(tyy, acty, A(ty) and m(t,) are the discrete values of the
corresponding parameters in time t,; Ty» A are random numbers with the
normalized Gaussian and exponential distributions, resp.

FATIGUE LIFE ESTIMATION

As known, any fatigue life assessment using a fatigue damage accumulation
hypothesis has its advantages and drawbacks. In order to avoid, therefore,
unjustified conclusions based on one formula and at the same time to obtain
a certain "scatter" of results, three types of hypotheses were adopted.

The simplest Palmgren-Miner (PM) linear damage rule for both strain
and stress Processes:
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the Serensen-Kogaev (SK) hypothesis also for both strain and stress
processes:

) - , = = a, 0
‘r)V‘/ Neg B, L=3x DM a (10)
and the Kliman (K1) hypothesis for strain processes:

1

. (1+n)/n
N (k)Nt(anl/ T amax) = DM’ L=3gp DM z 1, (11)
fwmin
and the Kliman (K2) hypothesis for stress processes:
. + = =
- G V1€ api/€ apmax?”! = D, L=xDp =1, (12)
fmin

where N, is the number of cycles at the ith stress 0, (strain €,i) level
at which fracture occurs after N¢; cycles, T amax (ea-.x) is the maximum
amplitude in the macroblock at which fracture occurs after Nemin® @ is the

parameter depending both on the material properties and the macroblock form
(Bily, 1989), DM is damage caused by one macroblock, L is the total fatigue

life (number of macroblock repetitions) to fracture, and n is the cyclic
strain hardening exponent of the cyclic stress-strain curve

¢ = a/E + (g/k)M, (13)

macroblock of sinusoidal cycles. Although most experimentally founded
recommendations express the opinion that it is sufficient to use the one-
parameter RFM (considering amplitudes only), they all are derived from
stationary cases. This is why the results of the two-parameter RFM
(amplitudes and their local mean levels) were also examined here.

EXPERIMENTS AND THEIR RESULTS

In accord with the aforementioned considerations Table 1 and Table 5
present variants of simulated processes with Gaussian and Weibull PDFs used
in this investigation. In both cases the stationary processes (variants G1
and W1) were taken as references for the subsequent fatigue life
estimation. All computations and experimental verifications were realized
for 1low carbon steel with the following parameters: fatigue strength
coefficient o¢ = 1132 MPa, fatigue ductility coefficient e¢ = 0.871,
fatigue strength exponent b = -0.115, fatigue ductility exponent c¢ =
-0.579, cyclic strain hardening exponent n = 0.199, and cyclic strength
coefficient k = 1164 MPa.

Various circumstances and questions motivated the choice of the
subsequent variants of processes. In the following we shall present them in
the form of the "question - answer".

GAUSSIAN PROCESSES

(a) what 1is the influence of time-dependent mean and time-dependent
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Table 1. Variants of simulated processes with a Gaussian PDF

Variant Type Character Non-st:tionary RFM applied
parameter
G1 stationary mVAWAA'VélvAWA -— 2-parameter
G2 stationary %TMVA% —— 2-parameter
G3 stationary %] \}: mean y (t) 2-parameter
i 2 Am \7
non—
G4 stationary degi' ‘J%”\x mean y (t) 1-parameter
non- =
G5 stationary W — ‘\IJ\A&W mean y (t) 2-parameter
non- M M
G6 stationary Y \.VA"V\&;/\/l mean y (t) 2-parameter
non- W
G7 stationary A = mean p (t) 1-parameter
non-
G8 stationary mean y (t) 1-parameter
non- 2-parameter
G9 stationary mean y(t) segmented
non- standard
G10 stationary deviation s(t) 2-parameter
non- standard
G11 stationary deviation s(t) 2-parameter
non- mean t)
G12 stationary and standard 2-parameter
deviation s(t)
non- mean ﬂ(t)
G13 stationary and standard 2-parameter
deviation s(t)
non- mean u(t)
Gl4 stationary and standard 2-parameter
deviation s(t)
non- AT < mean g (t)
G15 stationary = L e and standard 2-parameter

deviation s(t)

variance on the fatigue life compared with the corresponding

process with the same parameters?

Answer: on comparing the fatigue
the non-stationary variants G3

(time-dependent mean), G10
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curves for the stationary variant G1 with
or Gl1 (time-

fable 2. Numbers of mabroblock repetitions to fracture (in thousands) for
,ome variants of strain processes from Table 1 and three fatigue hypotheses

Levels Hypothe- Variants
sis Gl G3 G10/G11 G12/G15
Low PM 10 320 10 510 2 360/2 380 8 960/10 300
e = 2.4x10-4 SK 3 245 2 830 471/476 832/910
K1 8 215 9 210 1 471/1 479 1 210/1 320
High PM 11 200 13 100 6 300/5 990 3 900/3 310
= 5.7x10-4 SK 2 800 2 600 1 260/1 200 790/630
K1 9 300 8 000 4 400/4 200 3 200/3 100

dependent variance) or G12 and G15 (both time-dependent mean and variance)

one can deduce that all non-stationarities shift, in the average, the re-
results to lower values but this shift does not seem to be significant.
lhis is also clear from Table 2. No significant differences can be spotted
oven when various forms of standard deviations are applied: one large
sinusoidal half cycle in variant G10, or more sinusoidal cycles in variant
G11, or a linearly increasing-decreasing mean with one half cycle or more
cycle sinusoidal standard deviation in variants 612 and G15, resp.

(b) what is the influence of the local amplitude mean levels considered or
neglected in the one- or two-parameter RFM on the resulting fatigue life
taking into account the non-stationary process behaviour?

Answer: on comparing the results for variants G3 and G4, G5 and G7, G6 and
G8 from Table 1 one comes to the conclusion that the one-parameter RFM
increases the fatigue lives for variants G7 and G8 but lowers them in case
G4 for both low and high strain amplitudes. In either case it is, however,
not too dramatic as obvious from Table 3. Because the two-parameter RFM
results are closer to the experimentally determined fatigue lives than
the one-parameter ones, the computational analysis of non-stationary random
processes with time-varying means should always take into account the local
mean levels and so the two-parameter RFM should be applied.

(c) considering that most measured operating processes represent strain
but some recommendations still rely on stresses it 1is of, interest to
compare the fatigue lives obtained for both the strain process and its
corresponding stress pair obtained from the strain process by means of the
cyclic stress-strain curve (Eq. (13)). Is there any difference between
these two approaches?

Answer: In this investigation the comparison was performed for the
stationary variants Gl and G2 and the two-parameter RFM and the life
results are practically identical. Similar observations are also related to
other variants. Thus one can say that in the high cycle fatigue range there
is practically no difference between the fatigue lives obtained for the
strain process and the material Manson-Coffin curve, and those obtained for
the stress process, recalculated from the strain process by means of the
cyclic stress-strain curve (Eq. (13)), and the S/N curve.

(d) when the measured process 1is visually estimated to possess some non-
stationary properties it is commonly recommended to split it into a few
segments, evaluate their statistical properties and obtain the result as
their average. Is this approach to the fatigue life estimation under non-
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Table 3. Numbers of macroblock repetitions to fracture (in thousands) for
some variants of strain processes from Table 1 and three fatigue hypotheses

Levels Hypothe- Variants
sis G3/G4 G5/G7 G6/G8
Low M 617 /444 856/1 174 868/1 216
e = 3.7x10-4 SK 123/89 171/235 174/243
K1 233/180 354 /456 367/478
High PM 13.1/11.1 130/160 170/203
e = 5.8x10-4 SK 2.6/2.2 26/32 34/41
K1 8.0/7.9 92/93 110/115

stationary processes to be recommended?

Answer: This approach was used for the non-stationary process with a time-
dependent mean (variant G9) which was divided into ten segments; they were
further analysed by the two-parameter RFM. The corresponding averaged
fatigue lives are about 2 to 10 times higher compared with the lives
obtained from the unsegmented process (variant G3). Qualitatively the same
results were also obtained for non-stationary processes with time-dependent
standard deviations. Thus the fatigue life estimation based on segmentation
of a non-stationary process into short segments does not seem to be
acceptable.

(e) when the measured process is in fact non-stationary but its time trends
are not so pronounced that it is reckoned to be stationary after the visual
“rough" appraisal then it may happen that the analysis is performed either
on the "ascending" part (as in variants G5 or G13) or on the “descending"
part (variants G6 or G14). Can these monotone trends influence the fatigue
life estimations?

Answer: on comparing the fatigue lives obtained for variants G5,G6 and G13,
Gl4 it is obvious (Table 4) that in all cases the results belong to the
same set as they do not substantially differ. Moreover, they do not
substantially differ from the results of variants G1 either (stationary
process). Thus there is no obvious danger in the analysis of a measured
non-stationary strain process as far as the choice of its analysed part is
concerned, as the fatigue lives obtained for various (and sufficiently
long) segments are approximately the same.

Table 4. Numbers of macroblock repetitions to fracture (in thousands) for
some variants of strain processes from Table 1 and three fatigue hypotheses
(standard deviation Sg = 3.7x10-4)

Hypothesis Variants
G1 G5 G6 G13 Gl4
PM 613 856 868 508 199
SK 207 171 174 112 40
K1 424 354 367 256 144
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lable 5. Variants of simulated processes with a Weibull PDF

Variant Type Character Non-stationary RFM applied
parameter
Wi stationary W = 2-parameter
stationary l:\(t) = const
w2 Rayleigh in Eq. (15) 2-parameter

stationary AR A A(t) = const
W3 exponential ™ in Eq. (14) 2-parameter

BRI
non-statio- A(t) = 10t+1
W4 nary Rayleigh in Eq. (15) 2-parameter
non-statio- W A(t) =t +1

w5 nary Rayleigh \M/‘VVW in Eq. (15) 2-parameter
non-statio- | e /”~F~\IUJ\ A(t) = 1.2t41
w6 nary exponen. | -~ ~ in Eq. (14) 2-parameter

non- step-wise
w7 stationary varying mean 2-parameter

WEIBULL PROCESS

The simulation algorithm for the random stationary or ‘non-sta_tionary
process with the Weibull PDF given by Eq. (8) has many variants. First of
all, if a(t) = 0, then for m(t) = 0 we get

X, = At g, (14)
where 3 ; are random numbers with an exponential distribution.

If for a(t) = O we take m(t) = 1 then we get
gy * [2 A6 )R A, (15)

In our investigations the simulation algorithms (14) land (15) were
used and for the linear time-dependent ramp A(t) we got 6 variants shown in
Table 5; variant W7 has a step-wise varying mean. In all cases the two-
parameter RFM was applied.

Without a detailed comparison of fatigue lives obtained one can
formulate approximately the same conclusions as for the S;aussian processes,
i.e. neither the PDF shape (exponential, Rayleigh or Weibull) nor the '.clme
varying parameter A(t) have a practical influence on the re.sultlng fatigue
life. All these results are compared in Fig. 1 representing the Mans?n-
Coffin curve for all Gaussian processes (line 1), Weib\{ll processes (line
2) and for all processes taken together as one set (%1ne 3) with a very
narrow 50 % reliability band and 90 % scatter band. It is rat!le!' surprising
but advantageous for practical analyses as the non-stationarities need not
be taken into account.
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Figure 1. Manson—Coffin curves for Gaussian (1) and Weibull (2) processes
from Tables 1 and 5; line 3 expresses a common set of fatigue lives

CONCLUSIONS

Computational estimation of the fatigue life under stationary and non-
stationary white noise with the Gaussian, Weibull, exponential and Rayleigh
probability density functions reveal the following facts:

- in the high cycle fatigue range there is no difference whether the
fatigue life is estimated from a measured strain process or from a stress
process, obtained by means of the cyclic stress-strain curve; one should be
careful, however, because a possible discontinuity in the S/N curve can
make this conclusion invalid (Bily, 1988);

- although no significant effect could be found after applying the one- or
two-parameter Rain Flow Method, it seems to be more appropriate to analyze
the non-stationary processes by the two-parameter method as it describes
more fully non-stationary trends;

- variation of time-dependent means and variances of the Gaussian non-
stationary processes lead only to minute changes in fatigue lives; the
results fall into a relatively narrow scatter;

- variation of parameters of the Weibull probability density functions
yielding stationary or non-stationary processes with the exponential and
Rayleigh probability density functions has the same effect as above and the
results also form one narrow scatter of fatigue lives;

- the Manson-Coffin curves for the Gaussian and Weibull stationary and non-
stationary processes do not principally differ and both can be approximated
by one common curve;

- segmentation of one long non-stationary process into short parts and
computation of the total fatigue life as the average from the partial
segment lives cannot be recommended because it yields a substantially
higher estimation of the total fatigue life.
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