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ABSTRACT

The problem of modeling a dynamic fracture under the high
rate loading is discussed. New structure-time criterion that
reflects a '"quantum"” nature of dynamic failure process is
presented. Approach suggested in this paper associates the
dynamic strength properties of the brittle media with the
special material parameter dimension of time. In case of
crack growth initiation problem the introduced structure
time may be 1nterpreted as an incubation time in well—-known
minimum time conception. The problem of crack instability
under the short pulse loads 1is analyzed. The results of
well-known experiments in terms of an assumed structure—time
criterion are discussed.
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INTRODUCTION

In many practical cases materials and structures experience
ioading rates many orders of magnitude greater than in the
quasistatical conditions. Therefore 1t 1s very important to
work out an  effective handy method of exploration and
testing the dynamic strength properties . of the materials
that operate at high loading rates. There are some principle
wffects of dynamic fracture of brittle solids that can not
be explained on the basis of traditional models of failure
iNikiforovsky and Shemiakin, 1979: Knauss, 1984; Kalthoff,

1980, . Even typically brittle failure 1s remarkable of some
dynamic =ttfects which can not be analyzed by Griffith and
Irwin crateria. One of the most essential problem 1is
modeling thie process of crack growth initiation and crack
Jnetabrlety 11 dynamic  conditions The difficulties in
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determining the critical parameters of dynamic fracture of
brittle media and specific behaviour of the dynamic strength
and fracture toughness at high loading rates generate the
different opinions about possible ways of description of
dynamic failure of materials. Morozov and Petrov (1990)
supposed that well-known rate dependencies of dynamic
fracture toughness of brittle media may be not interpreted
as the material functions and showed the principal way to
the analysis of the effects of rate of loading within the
framework of the system of fixed material parameters.

Approach suggested in the present paper associates the
dynamic strength peculiarities of the brittle media with the
existence of the special physical constant, dimension of
time, that must supplement the quasistatical fracture
toughness and strength of the material forming, jointly with
them, the united system of the fixed material parameters. In
special case the introduced structure time may be
interpreted as an incubation time in well-known minimum time
Ccriterion proposed and explored by Kalthoff and Shockey
(1977), Homma et al. (1983), Shockey et al. (1986). Brittle
fracture theory suggested in the present paper allows to
calculate the fracture toughness rate dependencies on the
basis of a system of the fixed material parameters.

CRITICAL STRESS INTENSITY IN CONTINUAL MECHANICS

We shall demonstrate that the conventional continual
mechanics principle of critical intensity of the stress
field is not consistent with the fundamental low of
conservation (change) of momentum in dynamic conditions.

Lets consider the one-dimensional problem of spalling and
suppose that rupture of the material i1s caused by the
triangular pulse of stress of duration T. We determine the
threshold, i.e. minimal for given T, wvalue of momentum
providing the failure U=U_(T). Using classical critical

stress criterion OSOC we obtain U =1/2C T. The appropriate

threshold is shown in Fig.1l by dotted line. We can see that
in accordance with that criterion even the infinitely small
pulses (momenta) can produce a macrofracture.

U —

st

T

Fig.l. Limiting values of momenta by spalling
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Let the semi—-infinite Straight crack is situated in the
unbounded plate and loaded on its faces x<0, y=0 by the
uniform rectangular stress pulse of amplitude P and duration
T: Oy=—P[H(t)—H(t-T)], Oxy=0’ where H(t) is the Heaviside

function. The corresponding expression for the maximal
normal stress on the prospective crack line (9=0, r=x) is
given by

Oy= Kpce)/72mr + 0(1), r >0; (1)
Kp(t) = PO(c,.co0f(t),  f(t) = [Vt H(t) - VE-T H(t-T)],

[ .
where ¢’(c1,c2)=4c2 cf - cg/(chﬂtw), €y. ©. are velocities
of longitudinal and shear waves. Using classical critical

stress intensity criterion K.< K.  we receive U =

KICVT/¢(01.CZ). Therefore at T >0 the threshold momenta
become infinitely small.

These conclusions contradict to common sense and the
well-known experiments on fast fracture show various effects
that are not consistent with the conventional approaches.

It is assumed in classical criteria that in dynamic failure
processes the energy and momentum used to form the new
surfaces and damaged domains in material are always consumed
by the continuous way. We want to show in the next section
that the elementary taking into account a discrete nature of
dynamic fracture process allows to avoid some contradictions
of the traditional "continual" models.

DISCRETE NATURE OF DYNAMIC FAILURE PROCESS

The principal parameter of linear fracture mechanics is a
certain structure size d that describes the elementary cell
of failure. The classical approaches by Griffith and Irwin
contain this characteristic as a latent quality. In case of
plane stress state and brittle fracture it is convenient to

take (Morozov, 1984): d=KI;/(WOi). The elementary cell of

fracture has not got a simple physical interpretation. It
may be interpreted by various ways depending on class of
problems. )

Lets put in consideration the elementary portion ("quantum")
of momentum required to make a failure of one structure
cell: U1=OCT; here T is structure time of fracture

postulated as a given parameter for the material and
appropriate class of problem.
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Being 1n conditions of spalling we assume that a threshold
momentum of given duration T was produced in medium and some
of the structure elements were destroyed. To produce a
failure of m structure cells there are required the pulses:

U =75 "7Tm, m= 1,2;3: sz (2)

We regard the parent distribution:

Po= C exp(-U_/aT), (3)
where Pw_ the probability of failure of m structure
elements, ¢ is parameter dependent on the profile of the
applied stress pulse and determinate by the condition of
coincidence the threshold critical momenta with the

corresponding quasistatic values in case of long—duration
pulses. C is normalizing factor defined by the correlation
me=l. An average value of the threshold momentum of failure
can be determined from the formula:

U= 2 PmUm (4)

m

and so for the above mentioned triangular pulse of stress
from (2).(3) and (4) becomes:

U=3T/(1 - exp(-2T/T)) (5)

The appropriate threshold is shown in Fig.l by solid curve.
We can see that now the finite limiting values of critical
momenta correspond to the short—-duration loading pulses. For
the long-duration loads 7T<<T and so the threshold
characteristics may be calculated on the basis of critical
Stress criterion: U = 1/20_T.

STRUCTURE-TIME FRACTURE CRITERION

We define failure as a breakage of at any rate one structure
element (Novozhilov, 1969). Then the corresponding criterion
may be written 1in the form:

J J(t7) dt o< O T . (6)

In accordance to (6) dynamic strength of the ‘'defectless"
materials can be considered as a calculated characteristic.
Criterion of this type allows to construct analytically the
time-strength dependence in conditions of spalling (Morozov,
Petrov and Utkin, 1990)
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In case of crack-containing solids we consider the average,
within the limits of structure size d, values of the local
tension stresses. Therefore the rupture of material at the
defect's tip (r=0) can be explored by means of criterion:

[
Jt) £ J ., Jt) = l dt ] e LYy dr; JT= o.Td . (7)
Time of fracture t, must be determinate by equation
J(t‘)=Jﬁ. By search for the parameters of load corresponding

to the minimum of the expenditures to failure it is
important to have the threshold condition:

Jt,) = max J(t) = J_, (8)

which may be considered as a condition of instability.

In special case of slow process the quasistatical criterion
by Neuber and Novozhilov (Neuber, 1937: Novozhilov, 1969)
from (7) comes out.

SHORT-PULSE CRACK INSTABILITY

We want to demonstrate that the effects of cracks
instability and . specific bahaviour of dynamic fracture
toughness of brittle materials can be obtained and analyzed
within the framework of the simplest theoretical model and
suggested criterion.

We are interested in critical pulse amplitude for crack
instability. It may be determined from (1) and (8) and
expressed by simple formula:

1 KIC
P,= t (9)

P(ec,.c,) max f f(s) ds
z v

On the other hand from traditional criterion of maximum
Stress intensity max K, (t) = K _(Sih, 1968) becomes

KIC

P = (10)
W(c,,c)) max f(t)
t
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In our case we find that
t

1
max — J f(s) ds <€ max f(t), G1I)
t T %
t—-T

and so it follows from (9),(10) and (11) that

P, > PZ‘

(12)
This result conforms with the experiments on short pulse
crack instability (Shockey et al., 1986), in which was shown
that for short-duration pulses (so, that the stress
intensity history were independent of crack length) the
critical values of the stress amplitudes were greater than
the same values calculated from maximum stress intensity
criterion and could not be explained by classical fracture
mechanics.

STRUCTURE TIME AND INITIATION TOUGHNESS

The dependence of stress intensity at the crack tip on time
is shown in Fig.2. The calculations show that in accordance
to structure—time criterion (7) the instable growth of the
crack does occur with the .delay, i.e. in stage of diminution
of the local stress intensity near the crack tip. At the

t

moment of fracture t integral ff(s)ds reaches its
t-T

maximum value, therefore f(t.—T)=f(t'). Due to monotony

properties of function f(t) we can conclude that K., (t)
exceeds the value KId= K(t,) for the period T.

ft) /\

T

o]

]
|
|
T t, t

Fig.2. Dependence of stress intensity at
the crack tip on current time.

Thus theoretical analysis of the crack instability shows
that structure parameter 7 has the features of incubation
t ime tinc introduced by Kalthoff and Shockey (1977), and so
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for the problems of crack growth initiation it may be taken

T = tae (13)

It is noteworthy that dynamic fracture toughness may here be
regarded as a calculated characteristic. The values of the
dynamic fracture toughness become less than the appropriate
quasistatical value

T Ky £(t,)
P®lc,.co)f(t,) = r <Kp, o (19

Kra=

.
J £(s) ds
5 =T

-

that was observed in the above mentioned crack instability
experiments.

Taking, for example, the characteristics of 4340 steel c, =
6émm/Usec, V=0.3, KIc= 47 MPa, Oc=l490 MPa, tinc=7 Usec and

duration of pulse T=18 |[lsec we receive from (9),(13) the
value of critical stress amplitude P1= 155 MPa that well

corroborates with the experiments by Homma et al.(1983),
where was obtained the same value of critical stress pulse
amplitude providing the jump of instable crack for the

; 2 =P
distance d=2K _ /(MO )Z 0.6mm.

CONCLUSIONS

In the present paper the new structure-time approach was
considered that allowed to get rid of the principal
shortcoming of the conventional ‘'"continual" models. This
approach gives the finite limiting values of the critical
momenta for the infinitely short durations of the loading
pulses. The connection between critical stress intensity
factor of crack growth initiation and history of loading
becomes within the framework of brittle fracture model
described by set of fixed material parameters.

The principal parameter that is responsible for dynamic
reaction by brittle failure is the certain structure time T,
which supplements the quasistatical fracture characteristics
system U_ and KIC (or d). Analysis of instability of cracks

under short pulse loads has shown that introduced structure
time <could be interpreted as an incubation time in
well-known minimum time criterion by Kalthoff and Shockey
(1977) .

Specific behaviour of dynamic fracture toughness and
critical stress amplitudes that corresponds to the instable
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growth of macrocrack can be theoretically predicted and
calculated. The results indicate good corroboration between
theoretical predictions and well-known experiments.
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