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ABSTRACT

A computation analysis of a stable crack growth by ductile separation in the conditions
of quasi-static and highspeed monotonic loading, based on the T*-integral application, is
made. An experimental computational method of J, determination requiring no accurate fix-
ing of incipient growth of cracks is offered. On the basis of the proposed approaches the ve-
rification of applying J-resistance curve criterion to the analysis of a stable crack growth
in the specimens loaded according to different schemes is carried out.
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At present, to analyse the stability of quasi-static crack growth the criterion of Jg-curves
and tearning modulus is applied. The essence of J -approach lies in the assumption that the
fracture process which occurs at the stably propagating crack tip controlled by two pa-
rameters, viz., the crack length increment AL and the Cherepanov and Rice J-integral intro-
duced for the non-linear elastic body. In other words, it is supposed that J(AL) uniquely de-
fines the resistance to the stable crack growth irrespective of the applied load type on condi-
tion of monotonic loading character and the specimen geometry. At the same time, many
studies have pointed out the vulnerability of the above approach and, in particular, the non-
invariance of J_-curves to the type of loading and the specimens geometry. Therefore, many
papers have been published recently, which are devoted to the J -approach modification by
means of introducing energy integrals of different types (Atluri, 1982; Brust et al., 1986).
The most significant results have been obtained by using the so-called T*-integral. At the
same time methodology of its computation, validity and the ficld of application for the prob-
lems pertaining to the ductile crack growth are not practically examined.
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STABLE CRACK CROWTH

To describe the stable crack growth Atluri (1982), Brust et al. (1986) used the parameter T*:
g au,

T =lim[[(U+K)n,~t== }dr (N
a=og Jx,

where U = fcudeu is the strain energy density; K - kinetic energy density; t, - projection of
the force vector on the contour [‘A to the X, -axis; u, - displacement vector components;
n—the projection to the X -axis of the positive unit normal to the I, (Fig.la);
the X -axis along the crack axis: [, - integration path cnveloping the crack tip. The computa-
tional and experimental work performed by the Atluri, Brust on the compact tension speci-
mens and the edge crack specimens resulted in the following. Observations for the station-
ary crack under monotonic loading in the conditions of the clasto-plastic strain the pa-
rameters T* and J-integral (computed by the ex-
ternal path) coincide. Along with the crack pro-

1« 3
e 34 /}\ pagation the J-integral increases continuously,
i l/ \\\r T whereas T* grows up to a certain constant
=l=== . ¢ T*  level and does not change with the fur-
. ther increase of AL. Note that for different mate-
L AL ' rials and specimens the value of T* . varies in

the range of (2,5—10)ch.

Another important problem considered by Brust
(1986) is the analysis of the incipient growth of
a stationary crack after unloading and reloading.
The author  states that with the T* correspond-
ing to the moment of unloading as the critical
value under the incipient regrowth of a crack the
corresponding computed loading P is roughly
cqual to the loading obtained during the ex-
periment ( P, = 0,5P, where P is the loading at
the moment of the beginning of the specimen
unloading ). If J-integral or the crack opening
angle criterion is incipient regrowth of the
crack, then P =P, which does not agree with
the experimental data. Note that in the above
T works T* is computed by rather a specific inte-

L ‘ ‘ ‘ gration path I, which stretches with the crack
propagation (Fig.1b), whereas from the definiti-
on of the integral T* by the eqn (1) it follows
that I, (Fig.1a) must be used. The analysis of
Fig.1. Other paths integration stationary ( y the above results gives rise to the following
and moving (- - e - -) crack (a, b) T*-, questions. What is physical meaning of the pa-

J- resistance curves (c) rameter T*; what is the reason Atluri, Brust and
other choose the integration path given in Fig.1b:
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how 1o make use of T* integral for the analysis of the fracture process. The absence of in-
variance dependence T* (AL) on the specimen type forms the last question.

To answer these questions as well as to analyse the applicability of T* for the description
of the stable crack propagation under monotonic loading we have make some computa-
tions. By means of FEM (Kostylev and Margolin, 1990) the clastic-plastic problem on the
crack propagation under the plane strain conditions is solved. In all the present analyses,
we use specimens with the dimensions S=400 mm, 2W=200 mm, 2L=100 mm and proper-
ties of the material corresponding to the steel 15CrMoVa at T=20°C: E=2-10° MPa,
v=(.3, ch=162 N/mm. The nonlinear stress vs strain curve is described by the dependence
G,=(520-596)-(g? )*** MPa. It is supposed that the elementary act of the crack growth occurs
when the local fracture criterion is satisficd al the crack tip. Ductile fracture of the material
at the crack tip is defined by the dependence c,.(eP) (Karzov ct al., 1989) (o, ~the hydrostatic
component of the stress tensor). In case if the loading of the material at each point of the fu-
ture crack occurs by one and the same dependence G, (gP), then the crack propagation cri-
terion is providing of self-similarity of the local stress-strain state (SS8) at the tip of the
moving crack. Thus, the numerical simulation of the ductile crack growth is conducted by
observing the self-similarity of the local SSS at its tip which is provided by means of the
appropriate external loading selection. The computation of T* is performed by two types of
paths (Fig.la, b) with A = A, providing the convergence of integrals: T* s = T* s
where 8<A.

The results obtained (Fig.1c) allow to conclude that the parameter T*, uniquely controls
SSS at the tip of the moving crack; to describe the SSS by means of T*, ., the dependence
T*,(AL) should be used. Fig.1c gives the dependence of J-integral computed by the external
path. It is evident that the rise of T*, with the increase of AL is related to the material
unloading processes occuring at the surface of the moving crack. The unique controlling of
the local SSS by the parameter T*, in the stable crack propagation process is evidently
caused by the fact that in the small path T, (Fig.1a) enveloping only the moving crack tip,
mainly the monotonic loading process occurs whereas the unloading is practically absent.
Under these conditions, as it is well known, the SSS is uniquely related to the strain energy
of the material U which in turn leads to the singlevalued correspondence of T*, to the
local SSS at the moving crack tip (analogous to the SSS connection at the crack tip with
J-integral for a non-linear elastic bddy).

The next question we examine pertains to the validity of T* as the criterion under the arbi-
trary loading. In spite of the satisfactory agreement of computation and experimental data
obtained by Brust (1986), note that in the general case the application of T* as the crite-
rion under the arbitrary loading is problematic. Let us prove this assertion using the non-
stationary loading as an example. Assume that under the nonstationary (in particular, cy-




clic) loading the fracture criterion of the material at the crack tip is the

Ju
‘=lim{(Un,—-t,=—)dI'=J,, v
T 'Ln;( ] ‘ 2)
For the cyclic steady material by the end of cach cycle SSS on the path T, is one and the
same in particular, t-a—% ), therefore, (2) is expressed in the form

R |

A0
A

. au,
lim{ Un,dl =lim[t, == dl+J,.=const @
A—02. JX
r T, 1
N_ being the notation of the number cycles to fracture, eqn. (3) is rewritten in the form
f

1}},{,‘]‘ U,,..Nn,dl=const or N, lAmoxj U.,..n,d[=const )

F; I,
If small A is fixed and taken as equal to A - parameter of the material or as it is often called
«Z0ne Process» then (4) is similar to Sih’s criterion (Sih, 1974) — the critical strain energy
density at some distance from the crack tip. Taking into consideration the fact that under the
cycling loading the strain energy density U_, is cqual to the irreversibly dissipated energy
per cycle, (4) comes to the condition of the elementary volume damage at the crack tip

which is presented in the following form:
NfUcyu::‘:UnSt':Uc (5)

It is assumed from equation (5), that all the dissipated energy goes for the damage. It is
seen from work (Troshenko, 1981) that some part of the dissipated energy goes for the de-
formation and only part of it for the damage of the material, the portion of the energy going
for the damage depending on the level of the total dissipated energy and the loading charac-
ter (quasi-static, cyclic, ete). Thus, the results given in Troshenko’s work do not allow to
consider (5) and, therefore, (2) to be valid for the use under the nonstationary loading.
Evidently, the application of Brust, T* as the local criterion for the analysis of the crack
initiation under reloading after unloading leads necessarily to the use of specific path I';
(Fig.1b) to obtain the agreement between experimental and computation data.

[t has been already pointed out that the application of Jn-approach is based on Jg-
curves invariance to the type of the loading. All the evidence of the invariance or its ab-
sence is based on different experimental studics. At the same time, the variability of experi-
mental data leaves the question of J-curves invariance open. Using T*-integral and its prop-
erty: T*(AL)=const, consider the behaviour of J,-curves under the stable crack growth in
the different specimens (center-cracked in tension, single edge notch in tension, three-point
bend). The computation technique of the stress-strain state and J, T* parameters, specimens
dimensions (S, W, L) and the stress-strain properties of the material are taken identical to
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T*, J, N/mm the first problem. In the crack growth
800 |

\ process, the unloading along its surface
- J : . . .
occurs resulting in J-integral becoming
noninvariant with respect to the integra-

600 tion path. Therefore, to compute J-inte-
gral the integration path passing along the

external  specimen boundary which cor-

responds to the value of J-integral is

400

computed on the basis of the diagram

P-u which is used to obtain
J-curves. Fig.2 shows that the depen-
dences  J(AL) obtained for different
loading schemes differ essentially, the

200

maximum difference reaching 30 % with

0 1 2 3 AL=3 mm. Thus, the application of J-
AL, mm curve obtained for any loading scheme
Fig.2. T* - and J-resistance curves for other specimens leads to considerable errors in the esti-
mate of the stable crack growth even un-

der the monotonic type of loading in case of an arbitrary construction geometry.

THE TECHNIQUE OF DETERMINATION OF J,.

This paper presents experimental and computation technigue to determine J,. using the dia-
gram P—AL obtained for one specimen. The method is based on the constancy of the param-
cter T* after the crack-growth initiation, i.c., on the single valued correspondence of the
diagram P-AL to the condition T* (AL)=const=J, .. To demonstrate this method consider
the following example. Let the dependence P-AL be obtained as the result of the experi-
mental work on the stable crack growth, a reliable definition of the dependence P-AL be-
ing made with AL>AL, (Fig.3a, curves BC or BC’) due to the technical complexity of
fixing small increments of the crack length. The problem is to define the true dependence
P-AL in the section AL<AL, (along the known curves BC or BC’) from the condition
T* (AL)=const which allows to define the crack initiation loading P and the correspond-
ing values of J,.. Suppose that with AL<AL, . the determing dependence P-AL corre-
sponds to the curve AB (the curve ABCC’ is computed beforchand by means of FEM from
the condition T*I(AL)=const for the center-cracked specimen). It is clear that the definition
process is the iterative process. In the first approximation, the dependence P-AL (curve
BC) is extrapolated arbitrarily in section AL<AL: c.g., FB or DB (Fig.3a) (P, /"’ — the load-
ing corresponding to the crack initiation in the first approximation). Further, by means of
FEM the clastic-plastic problem is solved. the dependence P(AL) along FBC or DBC being
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observed. In the process of the stable crack
growth the value of T* -integral is calculated.
The results  of the computation are given in
Fig.3. It is sce that with the crack propagation
and approximation of FBC and DBC to ABC
the dependences T* (AL) obtained under the
loading along FBC and DBC  converge to
the values of JiV close to the defining Jie
In the second approximation, the loading B@
is defined by means of FEM, which corre-
sponds to the crack initiation by the condi-
tion T*I(P=chm)=-]|cm~ Then interpolate
P(AL) between the points E and B and repeat
the procedure of defining T*(AL) using the

curve EBC similarly to the first approxima-
. tion. It is clear that the value J, @ is close to
number of approximation converges o J,..
Thus, by means of the above method parameter
Jic is determined more accurately even if the
Fig.3. fCthmaﬁf illustration method of defini- data about the primary region of dependence
:p(:udi'gg (;f‘l Yrse;rsi;ﬁcger(;:&hega()b)com' P-AL is unreliable. It wil] be noted that this
method is iterative only with a small extension
BC when ALC<2ALR. When ALC,>ALB , the
first approximation J ™ with AL=ALC, practically defines the J,. (Fig.3b).

100
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METHOD OF DEFINING CRITICAL LOAD P,

stable Crack growth The computation of the critical load P as well as

unstable

the definition  of Jic is performed on the basis
of a single valued connection conception of the
diagram P-AL with T*(AL)=const=J,C. Fig.4
gives the example of computing P(AL) both on
the ascending and descending branches, the

properties  of the material and specimen dimen-
sions are identical to the previously obtained
ones, cxcept J, =49 N/mm. The maximum

0 2 4 6 AL, mm
value P of P(AL) corresponds to the unstable

Fig.4. Load v i i ; C : .
& v crack growth of bending specimen crack propagation initiation. It js evident that
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Jic than J, V. In other words, Jic is where n-

here the quasistatic analysis cannot be applicd and it is necessary (o use an approach allow-
ing for the dynamic processes occuring in the structural clement caused by the crack propa-
gation with the final rate. The existance of the unstable crack growth is related to the
probable absence of the catastrophic fracture of the structure due to the unsteadily growing
crack stop caused by the following factors: pressure reduction in the pressure vessel result-
ing from the gas or liquid ctchihg through an open crack: the presence of favourable non-
homogencous form fields of residual stress and the changed properties of material on the

crack propagation path.

DYNAMIC CRACK PROPAGATION

The dynamic crack growth may be caused
both by the unstable crack growth and its de-
velopment under the highspeed loading of the
structure. It is evident that in one and the
same case the algorithm of the crack kinetics
computation is one and the same. To study the
behaviour of the parameter T* and its applica-
tion to the analyses of the - dynamic crack
growth the following €xperiments are made:
a center-cracked panel undergoes a dynamic
loading by the rule o® = a(t). As soon as the

o107, "

V107, b critical SSS is reached in the crack tip, which
mmésde;% T corresponds to the condition T*= c (T*is
. computed with regard for the kinetic cnergy
200 [ AT by the formula (1)), the crack initiation and
its propagation in the conditions of the in-

100 1~ v creasing external loading occur (Fig.5a). The

‘v crack propagation criterion is the self-simula-
0 1 2 3 AL, mm tion of the SSS in the crack tip, which is per-

formed by means of the crack growth rate se-
Fig:5. Applied load G() and SSS at the tip crack  lection V=dL/dt=AL/At. The SS§ computa-
tion is performed by FEM .in the dynamic
clastoplastic conditions, the crack growth
similation is carried out according to the technique (Kostylev, Margolin, 1990). The SSS
kinetics, V and T*, computed for different types of integration paths is given in
Fig.5. It is clear that to provide conditions for self-simulation of the SSS in the moving
crack tip its growth rate V should increase continuously with the given loading character.
Dependences T*(AL) possess the same peculiaritics that occur in the case of quasi-static

(a), T*, v - resistance curves b)
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loading. T*, behaves most steadily which makes it useful for the numerical simulation of

the dynamically growing crack, the rate of the crack growth being determined from
T* (AL)=const=J,. Since T* is the function of V, this non-linear equation is solved only
by the iteration method. The recurrence formula (Kostylev and Margolin, 1990) to define V
in the elastic body is

V_, =Co-(Cy-V UG /27)" (6)

where C, is the Rayleigh wave rate, G_ is the clastic cnergy release rate on n iteration, 2y
is the effective surface energy. (6) with the rates V<<C, which corresponds to the case of
the ductile fracture requires the exponent m to be chosen correctly to provide V>0, which
results in a complex definition process. In the case of the ductile fracture the following
recurrence formula of the rate definition is propouse:

Vo=V (T ™ M

CONCLUSION

1. The computation method of stable and unstable crack growth under the quasi-static and
highspeed monotonic loading based on the application of T*-integral is developed.

2. The configurgtion of integration path of T*-integral with the parameter T* uniquely
controlling the stress-strain state at the moving crack tip is substantiated.

3. The new method for defining J,. by the experimental data obtained on one specimen is
offered. which does not require the exact incipient growth of the crack fixing.

4. J,-curves are proved to depend on the structural element loading scheme.

5. The application of T*-integral to define the critical load P, is demonstrated.
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