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ABSTRACT

A unified study of the various dynamic instability problems asso-
ciated with rapid crack propagation is attempted in the present
work. The aporoach is based on the "twin-crack” model, according
to which the geometry of the immediate vicinity of the tip of a
rapidly propagating crack is better simulated by a pair of micro-
cracks of random lengths and orientations than by a single point.

INTRODUCTION

It is known that the propagating crack tip is accompanied by a
tuft of randomly oriented micro-cracks of various lengths [1,2],
long before macroscopic crack path deviation is observed. Also it
has been proved [3] that the classical static fracture criteria
fail to predict the angle of the crack path deviation, when they
are applied according to the mode introduced by Yoffe [4], i.e
around a mathematical crack with a single point crack-tip.

Motivated by these observations Theocaris et al [5] introduced
the twin-crack model, according to which the running tip is bet-
ter described by a pair of two micro-cracks of equal lengths and
inclinations relatively to the initial main crack direction.
Thus, the prediction of the future crack direction necessitates
the application of a suitable fracture criterion in the vicinity
of a double crack tip. The twin-crack model was then further
developed to study cases of partly asymmetrically pre-branched
configurations [6,7], the study of which revealed an inherrent
relation between the various types of directional instability,
i.e. branching, kinking, curving, arrest and reinitiation.

In the present study the twin-crack model is generalized to
encompass fully asymmetrically pre-branched geometries. For the
application of the model a method introduced by Theocaris [8] for
the calculation of the stress intensity factors (SIFs) is used.
The SIFs obtained are corrected through the velocity factors
given by Kostrov [9], and then the dynamic stress field of Freund
and Clifton [10] is calculated. The stress field being known the
T-criterion of fracture [11] in its dynamic version [12] is
applied to predict the future paths of the two microbranches.
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THEORETICAL CONSIDERATIONS

The "Twin-crack" Model

According to this model macroscopic crack path deviation is not
governed by a single quantity (stress intensity factor, tangenti-
al stress, strain energy density etc) considered as critical. It
is accepted that the phenomenon is characterized by a critical
six-dimensional surface of the form:

flo,, b/a, c/a, 9 9., C)=E

where 0o is the externally applied stress, b/a, c/a the ratios of
the Tengths of the two
micro-cracks (Fig.1),
relatively to the one
of the main crack, 98
and gc the respective
inclinations and ¢ the
velocity of the crack.
For deviation to occur
each of these factors
must exceed a critical
threshold. However, it
is to be emphasized,
that this condition is
necessary but not suf-
ficient for the pheno-

P s menon. It is observed,
) that a dual character
Fig.1: The geometry of the problem is attributed to the

phencmenon, consisted
of stochastic and deterministic parts. The first is due to the
presence of factors that cannot be prescribed a-oriori, i.e. the
microscopic level factors (Tengths and orientations of the micro-
branches) while the second one is represented by the externally
induced (remote stresses) factors or externally exactly measured
ones (crack velocity). Further, it is accepted that to predict
the future crack path, a suitably selected fracture criterion
should be applied around only two mutually influenced crack tips,
since it is experimentally observed that from the whole tuft of
microcracks, at the finaj steps before macroscopic deviations,
only two dominate over the others.
In the present study the dynamic version of the T-criterion of
fracture is selected, since its predictions approach better the
experimental results [5]. This version is shortly described now.

The Dynamic version of the T-criterion of fracture
The T-criterion of fracture, initially proposed to study the
static crack initiation problem, when applied in Dynmamic Fracture
Mechanics (accroding to the "twin-crack" model) is formulated as
follows:
1) Each one of the two microbranches of inclination oi (i=8B,
C) relatively to the main crack direction, will propagate towards
the direction 6p, at which the dilatational strain energy density
Tv, calculated a;ggg the Mises elastic-plastic boundary, reaches
a maximum value , orovided that this value exceeds a critical
threshold Tv'o, which is considered as dynamic material constant.
17) This propagation will lead to succesful macroscopic de-
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viation of the branch(es) for which the opair (g1, 8s), i=8,C,
does not Jlead the microbranch to be absorbed @y the main crack.
For plane stress conditions the above assumptions are written as:

TD(r,e)lrzr(e)=(1+v) (07 +0%,-0, 0,,) /3E=T (1)
at,(r(8),e) . ) 3°T (r(8),8) . -
35— = _— <
'ws " 38°? &8
Tv(r(eo).eo)I:S;—Zv)(o”mzz)z/efﬁvlo (3)

85=9+sin"{sin93[(1-b2/1;sinzehl/z- ?coseg]}z(oe+eg)>0
? (4)
65=9+sin'l{sineg[(l-c2/1§sinzebl/2- %coseg]}s(oc+eg)<0
c

Calculation of the SIFs )
The procedure adopted is the one developed by Theocaris [8]. The
three cracks of Fig.l are considered as independent and thus the
Datshyshin-Savruk [13] method yields the following system:

% g;(t) %« , - i g
J —odt) | [Mnk(t,s)g(t)+L~((t,_s)gk(t)] =n(o,-io,)

ka-oec (5)
with O<s<an and n=A,B,C. Here ax (k=A,B,C) are respectively the
lengths a,b,c of the cracks OA, 0B, OC. For the kernels it holds:

Mm(t,s)=Snk(f,s)+Snk(t,s)exp[Zi(ek-en)]

S (t,s)
Ly(ts)=s (ts){1- —2e expl2i(0,-6)1} [ (©)

nk S

with S*sé(t-s exp[i-(ek-OJ])'% and om-ia&--s[l+exp(2ied]/2.
The single-valuedness condition for the displacement around the
composite crack provides the additional equation:
I lexp(i0) [g, (t)dt]=0 (7)
k=A.B,C

The unknown functions g'(t) in Eqs(1,3) are proportjonal to the
density of the dislocations along the three branches and they are
related to the complex SIFs through the equations:

K,=0(2n0)"*1im [(0,-s)";(s)] (8)

Since,however §;(s) can be written as :
9,(s)=(a,-s)"?[h (s)+ih, (s)] (9)
where the real, hci(s) and the imaginary, hk2(s), part of it have
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no singularities in s=a,, the complex SIFs are, finally, written:

1/2 : _
K.=o(2na ) (h(a)-ih (a )], k=A,8,C (10)

The solution of the obtained complex singular integral system was
achieved numerically by applying the Gauss-Legendre and Gauss-Llo-
8 batto integration rules. The

e\ b/c=1.00/0.50 Gauss-Lobatto one was appli-
: ed to the integral equation

for the branch 0A with N=30

AR — S points of integration, and

the Gauss-Legendre rule to

the integral equations of
branches 0B, OC with the sa-

A ~N

t_; NEENEE AN AN me number of integration po-

= 750 (@ o ints. Since the Gauss-
5 lalo Lobatto method has (N-1)
s*/m|O collocation points arising

e o —] from the linear system of 6N

/ \ real unknowns, two real equ-

1 ations are missing, which

are supplied by the condi-

°° o o s tion of single-valuedness of

oY the displacements in complex

c form. The reduced results of

Fig.2: Reduced SIFs versus gc the method are plotted in

Fig.2 for the case with b/c=

1.00/0.50 and for three values of angle g8 for both tips B and C.

The main advantage of the abovedescribed procedure is that it

permits the direct calculation of SIFs at the tips of the bra-

nches without any extrapolation. Also, is proved to be accurate

and stable for extreme geometries (small angles ¢, and length ra-

tios), which are of special importance for the present study. The

results obtained are found to be in good agreement with experi-
mental data (Theocaris and Blonzou [14]).

APPLICATION AND RESULTS

The above described procedure was applied for the case of 2124
ATLi Metal Matrix Composite (MMC). The angle o8 of inclination of
the microbranch 0B was kept constant and equal to 15°. Two ratios
for the lengths (0B) and (OC) were selected, i.e. b/c=1.00/0.50
and b/c=1.00/1.25. The ratio of the length of the main crack (0A)
to the length (OB) was supposed constant and equal to 40, based
both on experimental observations of fractured specimens with
bifurcated cracks and on theoretical calculations indicating that
the influence of this ratio is stabilised above this limit. Con-
cerning crack velocity, ¢, three characteristic values were cho-
sen, i.e. c/c2=0.35, ¢/c2=0.50 and c/cz= 0.65 (c2 is the velocity
of distortional waves), since the value c¢/c2=0.50 is considered
as the critical limit above which cracks are bifurcated. The ini-
tial conditions are summarized as follows:

i) Crack OA propagates with constant velocity ¢ in a thin
sheet Joaded at infinity normally to the crack axis. )

17) Tio O becomes suddenly stationary and two branches 0B
and OC of lengths b and ¢ and inclinations 98 and @c appear both
broobagating with velocities equal to c.
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The advantage of the above formulation is that it permits direct
comparison between the two possible states of crack tips, i.e. to
continue running as a single tip (tip A) or to deviate from its
straight path being bifurcated or kinked (tip 0).

For any given geometry (b/c, o8, oc) and crack velocity c¢ at
each one of the three tips of Fig.] there exists a direction to-
wards which the local dilatational strain energy density, along
the Mises elastic-plastic boundary, shows a maximum value TV
(i=A,B,C). Thus the respective crack is expected, according to
the T-criterion to propagate towards this direction. Which one of
the two patterns (single A or double 0) will be realized, depends
on energy equilibrium considerations (as it will be discussed in
the sequel). For the moment we have plotted in Figs 3(a,b) the
maximum values of dilatational strain energy density of the tips
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Fig.3: ™ versus angle ¢c for 98=15° and two length ratios

B and C, reduced to the respective maximum (and constant) value
for tip A. In these figures we have drawn (with dashed line) the
same quantity for the tip A. As it can be seen from these figures
there exist certain regions of ¢c angles for which Tvorax and
Tvimx are greater than Tvimx implying, thus, that for such geo-
metries and crack velocities the twin crack front 0 is more
possible to appear and propagate than the single one, since the
energy consumption is greater. 7

Up to this moment it seems [
that the instability phenomena Tf

|

present a completely stocha- i X
stic behaviour, since the ra- . , | | |
tio b/c and the angles ¢: can- = f 4 ! V \
not be a priori known. How- J§ | | f
|

ever, the present model per- -
mits us to resolve this con- 19 v bic0s0|

(T

tradiction with common experi- ® : b/C=075 s
ence (that at least branching s bIC125 “”
angle varies between narrow Cit; =050
limits), by locating the opti- 18 . .

0 2 50 75

mum geometries through the ad-
ditional reasonable assumption
that only geometries where the
sum of the dilatational strain

-9 (%) —

Fig.4: The sum TvBract TvCrax
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energy consumption at the tips tips B and C becomes maximum. To
1oc8ate hese geometries we fkave plotted in Fig.4 the quantity
(Tvimex+Tvimax), reduced to Tvimx, versus angle g¢c, for three
values of the ratio b/c, and for velocity equal to 0.5cz. It is
clear that this quantity shows one or two discrete maxima (the
number and location of which depends on the ratio b/c), corres-
ponding, apparently, to the optimum combinations (b/a,c/a,9s,0c,
c) for macroscopic crack path deviation to occur.

The question, now, is to which direction each branch will
propagate or, in other words, which kind of crack instability
(branching, kinking, curving or_ arrest) will be realized. In Figs
5(a,b) the angular direction 8 and 85, around each branch tip,
where Bt'.[i\e maximum value of the dilatational strain energy densi-
ty, Tvimx, is attained, is plotted, versus inclination angle oc,
and for the same constant quantities as in Fig.3. As it can be

seen, both branches can propagate to either positive or negative
70
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Fig.5: The propagation angle of the two microbranches

directions depending on their initial geometry and velocity. Whe-
ther the microbranch will survive or not depends on the specific
relation between the angles ¢ and 6 (Eq.4).

Summarizing, if we want to predict the future direction of a
pair of microbranches of given geometry we proceed as follows:

i) In Fig.4 we Jlocate the geometries of maximum dilatational
strain energy density consumption.

ii) From Figs 3(a,b) we check whether both or one or none of
them can propagate i.e. whether the condition

TBiSxo T max (11)
holds or not.
i7i) From Figs 4(a,b) we obtain the propagation angle 8%*
of each microbranch and wg‘ h the aid of Eq.(10) we calculate the
final deviation angle 6% of each microbranch. -Depending on
whether both or one or none of the microbranches survives and
orooagates independently and the final angle of deviation we can
determine the kind of expected instability. (An analytical des-
criotion of the possible combinations leading to all experimenta-
I1y observed crack path deviation modes can be found in refe-
rences [6] and [12]).
Applying the above procedure for the selected geometry, with
98=15° and for b/c=1.00/0.50 and velocity c=0.5c2 we observe from
Fig.4 that the optimum geometry corresponds to the combination
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(b/c,98,0c,c)=(1.00/0.50, 15°, -22°,0.50c2). From Figs 3(a,b) we
conclude that only microbranch 0B can survive and propagate in-
dependently, since the conditions of Eq.(4) are satisfied only
for it, though both microbranches fulfil the equation Tvlmax>
T nax, (i=B,C). The angle at which the branch 0B will propagate
is found from Fig.5 to be 85=30° gesulting, thus, according to
Eq.(4), to final deviation angle 83=45°. Apparently the configu-
ration under study resembles the phenomenon of macroscopic kink-
ing, since only one branch survives, avoiding absorbtion by the
main crack.

In a similar manner, the geometry with ¢8=15° and b/c=1.00
/1.25 gives as optimum the combination(b/c,9s,ec,c)=(1.00/1.25,
15°, -30°,0.50cz). In this case is microbranch OC the one that
survives and propagatesAindependenﬂy fulfiling Eq.4 and the re-
striction that Tvimx>TVimx. This configuration results to Op=
35° resembling again the phenomenon of sudden crack kinking (with
kinking angle 8s=65°).

Finally, studying the case with (b/c,98,9c,c)=(1.00/0.50,
15°, -42°,0.50cz2) we conclude that both microbranches survive
propagating independently, since both of them satisfy Eq.4 and
the gnergy restrictions. The angles of propagation are found to
be 6p=30° and 65=0° and the respective deviation angles 84=45°
and 8d=-42°. This case corresponds to an almost symmetric branch-
ing with half angle of about 43°. However, we should emphasize
that similar situations should not be expected to appear, since
they do not correspond (from the energy point of view) to optimum
geometric*combinations. In fact, reported experimental cases with
branching angles greater than 22° are ver seldom.

CONCLUSIONS

The expected behaviour of fast running cracks is studied by
expanding the "twin-crack" model to cover fully asymmetrically
prebranched crack-tip configurations. The a priori unknown
lengths and orientations of the two microbranches act as a sto-
chastic factor to the whole phenomenon introducing an uncertainty
factor and arbitrary assumptions concerning their initial values
results in macroscopic geometries resembling all macroscopically
observed modes of dynamic crack path instability.

The main conclusion from the present study is that there
does not exist a well defined mechanical quantity controlling the
instability phenomena. Instead, a whole surface depending on both
micro- and macroscopic factors, describes the running crack beha-
viour. The microscopic level factors, being a priori unknown, are
"suppressed" into four macroscopically interpretable quantities,
i.e.the length ratios, b/a and c/a, of the two microbranches and
the initial directions of them, ¢i. Although, no predictions can
be made on the exact values of these four quantities ¢he phenome-
non is proved to be not completely random (a fact experimentally
verified) since the demand of the model for maximum consumption
of dilatational strain energy density gives us the optimum geome-
tries prefered by the nature of the phenomenon.

The final observation, extracted from the study of the pro-
blem of crack path instability through both symmetrical (refs
[5,12]) and partly or fully asynmetrical (refs [6,7,12]) pre-
branched configurations, is that typical branching of the crack
can be achieved under either symmetric or asymmetric initial geo-
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metries of the microbrances. On the contrary, the other kinds of
crack path instability can be achieved only under asymmetric inj-
tial geometries and excess of available energy (second maximum of
the dilatational strain energy density distribution). This pheno-
menon implies a kind of preference of the initial geometry of the
microbranches (bifurcation is much more often observed experi-
mentally compared to curving or kinking or arrest and reinitiati-
on), indicating, thus, that a statistical approach of the pheno-
mena is necessary in combination with the study of the divergence
of materials from their assumed perfect structure. These diver-
gences, either preexisting (voids, inclusions anisotropies) or
externally induced due to the propagation of the crack, cannot be
ignored.
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