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ABSTRACT

Corrosion failures of pipelines carrying sour gas are aften
attributed to stress corrosion cracking. Nevertheless, general
corrosion, leading to gradual level wall thinning, and pitting
corrosion have also to be taken into account when making
lifetime predictions for such pipelines. Pitting corrosion
pbrogresses around various part-through surface flaws such as
installation mechanical damage, external corrosion stains or
grooves under disbonded coatings on line pipes, the internal
corrosion stretching along the Pipe bottom (so-called "stream’
corrosion), etc. One of the principal factors affecting on the
corrosion expansion rate is the level of the local stress-
strain state along the corrosion front. Strain and stress
values around the surface local damage can considerably exceed
the appropriate values averaged across the wunsound wall.
Consequently, it is necessary to be able to trace the corrosion
front evolution to evaluate the remaining lifetime and the
current strength of the pipeline segment subjected to the local
damage. In this article , a numerical model for kinetics of the
localized corrosion expansion is developed. The model involves
a new effective recurrent technique for determining an elastic/
plastic solution to the problem of stress and strain fields
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RECURRENT TECHNIQUE FOR CORROSION FRONT EVOLUTION

Stress-strain state of Strained metal affects on corrosion
metal loss rate in accordance with the well known equation:

v = VC(Kep+l)exp(dV/RT) (1)

where o is the hydrostatic constituent of the stress tensor, v
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is the molecular volume, R and T are the universal gas constant:

and the metal’s temperature, K is a constant, ¢ is an average
P
value of the plastic constituent of the deformation , v, is the

general corrosion rate for the stress free metal. The actual
values of K and v, depend on both the pair ‘metal - sour envi-

ronment’ and the temperature value.

constant along the corrosion front because the stress-strain
state around the corrosion damage locality is essentially
heterogeneous. Let us consider that we are able to calculate
effectively the stress-strain picture around the surface damage
with an arbitrary shape. Then, a time-step recurrent technique,
making it possible to trace the corrosion front evolution, can
be presented as follows. Time is divided into rather small
equal intervals. In the first step of the recurrent procedure,
the stress-strain state around the damage with some initial
shape is determined. After that, using the equation (1), the
corrosion front spreading rate is calculated at each point of
the damage surface. Before the second recurrent step, the new
corrosion front position is calculated after that all the
procedure is restarted and so on.

The necessity to describe in detail the stress-strain state
around the part-through surface damage having an arbitrary
shape is the most difficult part in the proposed model. An
effective numerical approach to this problem is developed
below. The essence of the approach to the problem of
elastic/plastic analysis for the part-through flaw locality is,
first, to find an approximate solution within the elastic
theory of shells with varying wall thickness and, second, to
perform a local elastic/plastic correction to the rough shell
solution. It is important to note here that plastically
deformed fields around the damage are Supposed nowhere to
embrace the wall thick layer entirely. For solving the
appropriate boundary shell problem an effective recurrent
technique is developed in the next subsection. This approach
involves splitting the differential operators for equilibrium
equations into two constituents one of which is just
appropriate operators in the constant wall thickness shell
theory. The result is so called ‘external’ shell solution. The
elastic solution constructed within the shell theory is
obviously invalid in the damage locality. The ’external’
elastic shell solution needs some ‘internal’ elastic/plastic
correction over the damage region. To overcome this difficulty
some ‘internal’ boundary problem is formulated for an infinite
strip containing an infinite groove with some fixed profile
which copies the local profile of the actual flaw. Boundary
conditions for the ‘internal’ problem are taken from the
associated ‘external’ shell solution.

"External’ Shell Problem. The stress field in the internally

pressurized infinite cylindrical shell with no defects is homo-
geneous and given by:

178

o _ 0= 0=0 2
o= vPR/hO cy PR/_h0 oxy (2)

i i i and nominal
where P is operating pressure, R and h0 are radius an

wall thickness of the cylindrical shell, v %s Poisson’s ratio,
x and y are axial and hoop cylindrical coordinates.

Now, let us consider a pipeline conta;ning some part-through
surface flaw. The equilibrium equations for the shallow
cylindrical shells can be written as follows:

N as
L+ = +X =0
ax ay
as N _
— + 4+ VY =0 (3)
ax 3y
N a°M a°T a°M,
IR P e s -2Z=0
R x> axay ay

where generalized membrane stresses (Nl, N2, S), bending

moments (M _, Mz) and torsional moment (T) are connected with
displacement.components (u, v, w) by the well known formulae:

a°w a%w
N = a(1-£) [ + v ¥ M = B(1-g) (&Y + u——E]
! ax 3y R ax ay
8%w a%w
N = a(1-f) [»22 + & L W " = B(l—g)[——; + V——;] (4)
2 8 3y R ay ax
2
- 3"w
S = a(1-f) (%4 4 &v|i-v T = -B(1-9) (1-v)
oy  ax) 2 axay

Here A and B denote some constants whereas f and g are
functions of both x and y:

A = Eh_/(1-v%) B = Eh)/[12(1-v7))

[]

£ = 1-h/h_ g = 1-(h/h)°’

By using the above relationship; (4) betwgen stress and
displacement components, the equilibrium equations KB) can be
transformed to some compact form in terms of the displacement
field (note: the differential operators are disintegrated here
into two constituents one of which is just correspondent
operators of the elastic theory of constant wall thickness

shells):
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L u -D u +X =9 (i,k=1,2,3) (5)

ik k Tk k i

where the following dimensionless new values are introduced:

Il
I
It

X

2
. -R"Z/(ah )

2 2
R*X/ (Ah) X RY/ (Ah ) X,

2

u = u/hD u, = v/h0 u, = w/h0

And the matrices of the differential operators ka and le are:

2 2 2
8° L, 1-v 3 1+v 3 ..
ax® 2 ay? 2 axay ax
2 2 2
L, = 1+v 3 3" L 1-v s - 8 (6)
2 axay ay* 2 ax ay
v 9. 1 + cviy?
ax dy
9 g8 ,1-v 8 g8 9 ¢80 1-v 8 g8 e
dx 8x 2 3y a8y 0x 3y 2 3y 8x ax
D, = pé_f§_+l:z é_fé_ 9 g8 ,1-v 8 (8 3 ¢ (7)
3y dx 2 4ax 3y dy 3y 2 48x 8x ay
2 2 2
PED £2. fec a—zg 6—2+ua ~[+
ax ay ax ax ay
2 2 2 2 2
a a a3 a a3
+—-Eg __E+V_—? +2(1-v)—g
ay 3y ax 0xdy 8x3dy

Here x and y denote dimensionless coordinates: x=x/R, Y=Y/R;
and C is a constant: C=h§/(12R2).

The problem written in the form of the equations (5) is ready
for sSolving by a recurrent technique. The main thought of the
recurrent procedure given below is to present the solution as
an expansion, each term of which represents a solution to a
certain problem:

:J) t .. (k=1,2,3) (8)
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Each term of the above series has to meet the correspondent
equation of the following set:

(o
L u'®= _x = X
ik k i i
(1) (0) (1)
=D u = X
ik k ik ok i
(3 G & .
Pk ok kauk - Xx (9)

To avoid too many problems with the boundary conditions, let us
consider an infinite set of regqularly Spaced identical flaws.
If the distances between nearby flaws (2xm in x-direction and

2y in y-direction) are much bigger than the flaw dimensions,
ar that there is no interaction between them. Now,

it is cle
each term of the series (8) as well as the right side parts of
the equations (9) can be presented as double Fourier series:

oo
u ' =y 7:J’(n,m)e><p[in(nX/xm+ ny/y_)] (10)
n, m=-wo
(j) 2 )
7= xU (n,m)explin(nx/x_+ my/y )] (11)
n,m=-cw

The initial approximation u:O) corresponds to the solution for

the unsq%qd pipeline. In order to determine Fourier coeffi-
cients 7, (n,m) in the ’j’ step of the recurrent procedure, we

substitute the Fourier serijes (10) and (11) in theé proper
equation of the set (9), after that each couple of integer
numbers (n,m) receives its own autonomous system of three
linear algebraic equations

Ltuma m) = 2 nym) (4,x-1,2,3) (12)

where lik(n,m) is a matrix of complex values given by

2 2 2 "
-|n_1-vm n2 -1ty nmn inny
2 2
X, 2 Y, 2 X Y. X

2

N

2 .
1+v nmrmir m l-v n 2 i
1 , (n,m = | -1t nmr” -5 L n S (13)
inny imm a[n? m? |2
—_— =  tom % -
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(3
i
(12) are to be calculated in the preceding ’‘j-1’ step of(gge
recurrent procedure in accordance with the definition X =
(y-1)
Kk

The values x )(n,m) in the right hand sides of the equations-

i

D u as follows:

ik

3 o _
X mm=1  r oa mumamelT (e (14)

1k
k=1 A,N=-0

The complex matrix d. in the above equation depending on the

four integer numbers is given by:

_ E%+1—V m% n? - |Duv J1-v ma g2 inmy
_|mAv  1-v nu T2 - E%+1-V 2% 2 imn
d = ¢(n-a,m-u) (15)
ianv ium 1+¢l(n—k,m-u)
X, Yo P (n=A,m-u)
2(,2 2 2( 2 2
cnt |2 15+V5E + ‘—‘;+vlE +2(1—v)n§A§

where ¢(n,m) and y(n,m) are the Fourier coefficients for the
functions f(x,y) and g(x,y):

)

f(x,y)= ¥ e(n,m)explin(nx/x_+ my/y_)] (16)
n, m=-o

g(x,y)= L ¥(n,m)explin(nx/x_+ my/y_ )] (17)
n,m=-w

Determining Fourier coefficients from the sequence of the
autonomous systems (12} completes the solution of the
’external’ shell problem in terms of the displacement field.
After that all membrane stresses and moments are easily
determined by using the equations (4).

’Internal’ Boundary Problem. Let us consider the second case of

flaws having narrow oblong shapes and stretching along some 1li-
ne L (Fig.l).The line L is the projection of the ‘river bottom’
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path to the mid-su-
rface of the pipe.
The ’river bottom’
path is unequivo-
cally determined by
the damage relief.
The line L is assu-
med to be smooth,
and the variance of
the flaw profile
along the line L to
be rather gradually

Fig.1l. Boundary contour of the surface flaw stretching along
the line L (plan view).

The ’‘external’ solution for this type of flaws is valid only
out of the flaw, and it needs a serious correction when
speaking about the damage locality. Let us assume that we found
the stress field everywhere, including the line L, in terms of
the shell theory as it was described in the previous section.
That would mean that the solution to the appropriate ‘external’
problem is found. In order to find the ’internal’ correction to
the ’‘external’ solution, which would be valid over the plane
crossing perpendicularly the line L, it is necessary to specify
some ’‘internal’ problem related to this cross-section. For this
purpose the local Cartesian system of coordinates is introduced
as follows (Fig.1):

X, = xcos® + ysin¥, x, = -xsind + ycos®

The ’‘internal’ problem is
formulated for an infinite
strip with the thickness
equaled to the wall thick-
ness. The strip width have
to be no less than double
wall thickness plus the
( flaw width. The strip con-
tains an infinite groove
with a permanent profile
which is identified with
the actual flaw profile in
the considered section
(Fig.2).

X2

X1

Fig.2. The fragment of the infinite strip for which
the ’‘internal’ problem is specified.

The lower and the upper surfaces of the strip as well as the
groove surface are stress free. Normal and tangent stresses
along the side surfaces of the strip are to be taken from the
‘external’ shell solution so that their generalized membrane
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Stresses ang bending and torsional moments would be equal to
the correspondent quantities over the pipe Cross-section,
Orlented along the tangent to the line L at the point ©
(Fig.1). so boundary conditions over the side surfaces of the
Strip have to be taken as follows:

T2(%,) =N /h + 12M,x /h’, o, (x) = o,
Tu (%) = N/h o+ 12M x /h’ (18)
where
N = Nsin®s + N cos®s + Ssinzs, Nt=—%(N1-N2)sin2ﬂ - Scos2v
M= Mlsinzﬁ + Mzcoszo + Tsin2w, M = %(Mi-MZ)sinZﬁ + Tcos2¢

The above-citeq ’internal’ problem with the boundary conditions
(18) can be eéxpanded into a plane-strain and an anti- plane
constituents:

(a) boundary conditions for the Plane-strain state are:

-— 3 — -—
022()(3) - Nn/ho * lebx:i/hO' T ™ Ty =0

(b) boundary conditions for the anti-plane state are:

3
031(x3) = Nt/h0 + 12Mtx3/ho, a,, = g, =0
There are many effective computer programs, based on the
dlfferentlboundary element methods, for the solving of plane
problems in solid mechanics (Banerjee and Butterfield, 1981;
Crouch ang Starfielq, 1983).
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