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ARSTRACT

In the present paper we propose a new technique for the
numerical solution of some nonstationary problems for
elastic-plastic bodies with concentrators. To define a
three-dimensional stress-strained state the fractional
step method is used with the unknovn values given at each
gtep in the form of two-dimensional time - and coordina-
te - dependent splines., Such an approach gives a better
(than in case of the finite-difference method) opportunity
to numerically solve the nonstationary three-dimensional
problems for elastic-plastic bodies of an arbitrary shape.
A FORTRAN program based on this method is also developed.
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NUMERICAT. COLUTION

In case cf ortogonal coordirate system o« ¢ ( ¢ =1, 2, 3)
tlie complete system comrising three equations of motion, ’
six constitutive equations and six Cauchy equations given in
terms of velocitieslhas the following form :

sy 3 i —
W, =2 AW, tE

; 1

4 (1)
Here three constituents of the displacement velocity vector
( W, = v; , Who = ¥, , W;= VU:), six components of

stress tervor ( WYy = Gy o, Ws = Ga » Wi = G322
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Wi = G1z
tuents of deformation tenzor (W = S W = E22
14

W;z = 833 0 \’\/43 = 812 ’ \l\/”'l 843 » \A/,S = £a3 )
are the components of vector W . Vector E and Ay

2 » A3 matrices 15 x 15 are kn ’

they can be dependent on som own. In general cage
e constituent Y

(Stebljanko, 1991 ), Introducing time rig Of vector w

grid
Wo={¢,. = b T z:
2 {fﬁl Lprys=tps “, EprasTtprystT,

p\/\/@ .643 y W

e —~ ~ e
£P+1 = '6/3+2/3+L3) ‘éol L=/(\,’,+L2+L3) P=012 }
s

We can write a system equivalent to 1
nal step methodq ( Janenko, 1971 ) ( )

(\A—/Io+n/3_\A—/p+(n—f}/3)//L\. - X’An (\'\—/P"’"l/")f-
N 'An(\X/PMn-{}/? x 32 RBP+(n-1s3 (3)

P

2

The elements of matrices A, are ¢
P+ r alculated - i
W P+n/3  4g calculated for t=<4p+nsz (forn € 1 L ptin s,
’ 2!

whereAn(_,)zAK'(,,,zn, )/,4- ){ + a/-1, ¢(+/3-1.

B[l 0 ][04, 32

+(g’")¢+{(~§3+§ 2+§+’/3)/2 +(£"/L (;3/2 _g21,_2/3)4.(41)‘—.’(’/-5)?/5] (4)
where /17 . 1925055, 153 S PH-1)/3 T=pt+tn/3 o
3= (- ()., 17h, h=(t-44)/t, 3% helfo1] |

It is suggested to calculate th
e products of th =
efficients instead of the coefficients themselv:sspunes 0

(Gn)e=(a, )‘z'(gm)c'—/wg ; (Gl = @), (8,)
k=1234

Thus, the spline ( 4 ) can be reduced to

. &
Wm(},‘z)=2(fm)¢%(§}é) (6)

e wo

‘:‘k*"l J
(5)
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9 ™ Gz; ) and six consti-

The functions Y: (% ) can be easily obtained from ( 4 ),
Approximation(6)g1ves values of W, not only for the grid knots

Luh={[0Akﬁﬂszagk];(xdé=au&,+h” (=1 My
(“Zzzj:(“/z,)d'ﬂ*hz,‘ 4= ‘T\/Z ; (9(3);{:("(3)/2-1“";23) k:{)\/&/jj« €79
h =max (f, hy hy)

but also between them which is significant when treating the
nonstationary problems for the bodies of combined shape. It
must be noted that finite-difference approximation of the de-
rivatives ( 3 ) allows only the first order, while ( 6 )
ensures the third order of approximation with respect on
(Zavjalov et al, 1980).Therefore, larger grids ( than in case
of difference approximation) can be chosen with the same ac-
curacy of computation which leads to the greater stability of
calculations,

’

The algorithm for the numerical solution of the system ( 3 )
consists of three steps, In the first step ( 1. = 1) the au-
xiliary vector WP +1/2 is calculated. Vector W) 1s initi-
ally known or calculated in the previous step. In the next
steps (N =2 ; 3 ) vectors W P+2/32 and w/P+1 are cal-
culated. The procedure is repeated further on. All the quan-
titles entering the equation (1), ( 3) are reduced to the
nondimensional form (Stebljanko, 1991).

Half of the coefficients ( 5 ) are determined by means of

\:/Pﬂ"“')/‘?q using the formula

(O ). :ezt{o{g,e W[ (e-1)r3, 0] k=1234, (8
where

d“:d44=-4)' 0{24=0{34:'16/51' 0(31=d24:—24)'

dz,{:du,:fZ)é_,' O(qa:dqg 2116—/' dZZ =dz3= -6,

dsa=daz = 35; dyy=dy=-2

The rest of the coefficients (Cm)e+ry  arve calculated at
each fractional step, using the collocation conditions and

the known conditions’at the mesh boundaries of the Wk, grid.
The latter may be treated as boundary conditions. In the
case of several known values of Wm (three values) for boun-
dary (odpn)o (3. =0 ), the following equation can be developed

L(Cn ) #4(Con)y + ) ] /6 = Wi, (01) (9)
and for boundary (o, )y (3 =1)
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L)y +4(Cm), (G )z /6 =W, (11), ( 10)

Analogous conditions are being formulated for the interior
meshes of the grid W}/ for all values of " o+ The lacking
equations are derived from the collocation condition

(Con) 876+ (G )y (3o 3% 34 3) 12 (o), (32-3% 2/3)+
+(Cm)y (1-3)76 ~L T/ h, .SZ’_S{(A,L)M [(&). 352 + (1)

(G (~327243+Y2)+(Cs )y (33%2-23) - (G )y (1-3) 52 = Quu(2),

which is obtained by substituting ( 6 ) into ( 3 ). Here

{ A Joms 1s the element of the matrix A, ‘and Q,..(%)
is determined by the known values, To define (Cm)ery we
use the collocation condition ( 11 ), written for $-Nn/3
(n =0, 1, 2, 3 ) and supplemented with the conditions of
(9), (10) type. In general case a system consisting of
15 x 4 equations is to be numerically solved. If we confine
ourselves to the explicit scheme only, when o/ =0 and 8 = 1
the system falls apart into 15 uniform subsystems, which are
solved as follows

] 4
(Cm')k+4 B 8%4 ‘;/fr'e. Qrvz [(é—f}/3]. (12)

In the case of some values of W/p_ being known at the mesh
boundary ( ¥ =0 ¢ 1 and &_ =1 ), & m can be substituted
for wW,,, in ( 12 ).

THREE-DIMENSTONAL PIATE WITH CONCENTRATORS

The author employs the above-mentioned technique to find
numerical solutions to some nonstationary problems for the
elastic-plastic plate which is modelled by a three-dimensio-
nal body. A notch and holes of three types were chosen as
concentrators. If the body is undergoing plastic deformations
at the near-concentrator area we use the theory pProposed
by Shevchenko ( 1987 ).

In tests 1 - 4 a nondimentional velocity of displacement
(Stebljanko, 1991 ) 1is locally predetermined. The direction
is indicated by an arrow. The rest of the surfece ares is
free from load,

The results of the numerical solution ( T = 001 3 hy=01
he =01 3 hs = 01 ) are presented in the form of the
stress intensity fields cn‘/<;s(6}is the elastisity 1imit) at
different instants of time. Here

Z . 2 2 SR 2 ) 1/2
G :{[(dﬁ— §22) +(Goa=8s2 )+ (S3-61,) | 2 +3(5 )5 + 5.5 ~S23)
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Field of G / G -const.
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Fig. 3. Test 3. Pielqd of G/U'/GS -corst,:

The case of combined defo
rmation of hole bourdar wh
Yy #0 and Vo #0 s 18 considered in Tesgt Z’ e

T™Mg. 4. Test 4, Field of Gy /Q’S -const,
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Fig. 6. Test 5. Field of G, / G, -const.

In test 5 a three-dimensional plate with a notch is inves-
tigated ( T 30’03 M « = R, -O’Z p 4 .O‘f ).
When o¢= O ', ¥, = Q-sign(ea) ( a#'o 1t t<oyg
and a=o 1f +>048 ). 4

In Fig. 1-5 the stress intensity field for mid-plane «L3=0
is shown with a firm line; and for od,=tH/2with a dotted
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line., Here X is a plate thickness ( [/ = c2 ).

CORCLUSION

It should be noted that the technique outlined above makes
it possible to employ, with the same accuracy of numerical
calculations, O grid with the far more greater step §
than the finite - difference method. (As an a priori esti-
mate we can write Lix~ l, , where hx denotes the integra-
tion step of the finite - difference method. )

Thua, employing cubic B-splines for approximating the unk-
nown values <5, |, G » & and using the fractional
step method we develop an ecénomical technique for solving
nonstationary three-dimensional problems for the elastic -
plastic bodies of an arbitrary shape.
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