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ABSTRACT.

The aim of this paper is to present a general Lagrangian description of a
bidimensiqnal medium with a moving crack, using a mapping of the
moving domain to a fixed one, and then, in the framework of linear
clasticity, to compute the Lagrangian expression of the energy release
rate and of the tearing modulus for each current crack growth.

This kind of method has already been successfully used for a
stationary crack, or more precisely for an infinitesimal virtual crack
growth, to compute the energy release rate for the initial crack length
[Destuynder-Djaoua. 1981 l. We suggest to extend this description to
finite crack growth to analyze the moving crack problem.

The advantages of this method are firstly to avoid remeshing or
introducing special numerical parameters such as relaxation forces to
simulate the crack growth, secondly to obtain exact derivatives of the

potential energy.
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INTRODUCTION.

The moving crack problem is generally treated with specific numerical
technigues, such as remeshing or nodal forces relaxation, directly in the
discretized model.

Nevertheless. in some particular cases, the moving crack problem has
already been treated in the framework of a continuum model. For
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instance, In the case of the steady-state crack growth in an infinite
tens:xle strip, the complete analysis of the continuum problem has been
achl'eved for an elastoplastic material [Nguyen, Rahimian 1981‘] For
partlcular domains such as circular disks, using a conformal mappiﬁg of
the moving domain to a fixed one, the problem has also been treated for
an _elastlc material [Fedelich 1990]. For the elastodynamic case, a movin
flmteT .elemen[ method based on a mixed Eulerian-Lagrangiaﬁ
descnptxop has been performed [ Koh et al. 1988]. This method operates
qn_the discretized model and uses a mapping defined locally for each
ﬁmte. element, and leads to a non-symmetric form of the variational
equatlor}s, due to the convective term.

To avoid the difficulties of the  numerical techniques used to describe

?vl:}e}?snlon cracked domain and for a large class of boundary conditions,

, ich eads to a Symmetric variational problem on the initial cracked

Lomam.. For the'quam-static elastic case, we can find an exact

thagrangnan expression of the derivative of the energy as a function of
€ current crack length represented b i i

the 5 an integral def

initial cracked domain. ’ ¢ hined on the

STATEMENT OF THE MOVING CRACK PROBLEM.

Deflnltlon of the ploble'“ on ',he current lno'lng Cl“(l‘ :
dOllldln.
we CO"Sldel an hOmogeneous ZD C()ntlnuum medlum, Wl[h a str algh[

moving crack , represented by a family of domains Qq of 2 , with a
moving line AP, as presented in figure 1.

. . Qq(t2)
Fig. 1. Family of domains with a moving crack.

The evolution parameter of the medium is the crack extension a(t), and
we note A(t) the loading parameter. The stationary part of the bou;ldary
of Qq is subjected to mixed conditions TYA) and U4h), and the moving
crack is free of stress. The current crack length is L+ (t), with a(0)=0.
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We assume small displacements and no volume force. For each couple
(«t,A), the equations of the local problem are:
e=(Vu)g= % (Vu +VuT) in Qg,
u = UY(A) on Sy,
oD
= 1
(o) je_(vu)S, ( )

divo =0 in Qg,
o.n =TY(A) on St,

where @ is the elastic potential.
I'he moving boundary conditions on the crack are:

o.n =0, Vm(x,y), me AP (y=0, -L<x<o(t)). (2)

Remark: we assume that a(t) is known all along the evolution process,
the determination of o(t) is a problem we will not discuss in this paper.
The following method is applicable even when only the evolution law of
a(t) is given.

To produce the variational form of
displacement field w, among the admissible fields v, which

the potential energy

the problem, we look for the
minimizes

W(v,ot,A) =I d (Vv)g dV I Td(A).v dS . 3)
Qo ST

Mapping of the moving domain Q,to the initial domain
We introduce a one-to-one C' geometrical mapping fa, which connects

the point M(X,Y) of Qo to the current material point m(x,y) of Qa, such

that f5' maps the family of cracks AP ( length L+o) into the initial crack

AO (length L), as presented in the figure 2.

Fig. 2. Mapping defined on the subdomain D
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E . I .
dom'@lly, this mapping , which becomes identity function out of the sub-
omain D of Q, has the following properties:

fu(D) = D,

fa(M) = M,in %-D,

fo(AO) = AP, )
fa(o) =P,

fo =19,

Wit é 5 i i
= hm;u?h a transformation, starting from any current domain Qg with
ving crack, we can restore the initial crack on the initial domain

Definition of the problem on the initial cracked domain.

With the help of the ; .
X 4 previous ma . W .
variable in the displacement field: ppine ¢ can change the spatial

VM, Me Q(). Vo(M) = V(fa(M)) (5)

I::crinbeew adlsglam???ent t‘ielq Va asspciated to the point M does not
represemauon‘iifl 1cfm{1ter1al pamgle as in classical Lagrangian
the chofes o 1 a arplly of material particles fa(M), determined by
i B € mapping. At each step of the evolution, the set of
note Fy thn gra(rjeigrrﬁsen;s fan arbltrary‘ Lagrangian configuration. If we
bar e s(an'ona,-y; o a, the moving boundary condition (2) now

(o Fd).n =0, YM(X.Y), Me AO (Y=0, -L<X<0). (6)

Wi ; sa
dolr:]l;.the( varu.lble' switching (5), the new problem, defined on the fixed
m €, lles'm searching, among the admissible fields v, the solution

Remark: i I i

i [hl? [formu}atlon may be extended to non-elastic materijals with
vl variables _transported” on the fixed domain. These internal
y S and t'helr evolution law are described on the arbitrar
agrangian configuration. Y
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CASE OF LINEAR ELASTICITY.
lLagrangian expression of the energy release rate.

In the case of linear elasticity, we can develop the elastic potential as

following:

P(e) = %A:s:e,

where A is a fourth-order positive symetric tensor. The expression (7)

of the energy becomes:

?N(v,a,k):;l A(VVv.FY) «(Vv.F ) detF, dV ~J TdvdS. (8)
2 ST

To pull off, in the mapping fq, the crack growth parameter o from the
specific geometrical function, we choose the mapping as following:

VM. MeQy, fo(M) = M + (M) |

where &is a vector field, which becomes zero outside of the domain D.
Then, we can develop the inverse of the transformation gradient Fg -
Fo=-—L 14400,

*7 detF,,

with € =-VE+dive 1Y detFy = 1 + adivE + odetVE.
At equilibrium, the expression of the potential energy becomes:
W(aLA) = W(Ug.0Lh) = ?I‘JQ (EI]FT A:(Vug):Vug dV

]

L AVU)(Vue O dV + L] L AV, C)(Vue.C) dV
+ OLJ‘DdClFa A:(Vug):(Vug.C) +2 DdCIFa (Vug.C):(Vu,.C) .

[ Ty dv |
ST




where dg=uof, g

functional, & . lh.e solution of the minimization problem of the
. Starting from the definition of the energy release rate:

G(mx)z-%,

Noting that ug is opti :

é ptimal, and developing in the ex ;

i ression (9
quantities C and detF,, the Lagrangian expression of G is:p ) e

2 GivES o 2 "
a=(-divE +2divEdetVE) +2u(-di _divE
G(aA) = 1L \\M 'v€2+dew§) dive A:Vug:Vug dV
2 (1+adive+ a2detvE)

D

> -2 -
(10) (1 + o02(-deWE+divE )+ 20 di .
+ +2adiv, )A:Vuu:(Vua.Vg) av

D (1+odivE+ o2detv)?

1 odivE + 2¢

. A(VUa.VE):(Vua.VE) dV

p (1+odivE+ a2detvE)

Remark: for a=(0, the expression (10) becomes:

G(O,A) = fD A:Vuy(Vu.VE -%dingu) dv. (11)

which is ¢ i

S[a[lic(ma;s a result obtained by a domain perturbation method for a
o yL crack ‘[Destuynder-Djaoua 1981 ]. The expression (11) is in
e A Lagrangian form of the Rice integral Our result (‘lO) ié an
Xtension of (11) for finite crack growth. ‘

A special selection of the mapping.

If we ¢ i i i
hoose an Incompressible geometrical transformation (detFy = 1)

the elastic problem may be written in the simple form for each (o,A):
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e . A P VA BBy

I A:Vuy:Vv dv - (xj A:(Vug. VE):Vy dV - (1[ A:(Vuy):(Vv.VE) dV
Qo D D

+aZI A:(Vug. VE):(Vy.VE)dV = I Tdy ds, (12)
D ST

V v, admissible displacement field.

The linear system (12) has constant coefficients ( that means that in the
discretized problem, if we use the Finite Element Method, the "element
stiffness matrix" corresponding to those coefficients are computed once
only during the problem evolution).

For each (o,)A), the energy release rate takes the form:

G(a,k):J A:Vug:(Vug.VE) dV aI A(Vuo VE):(Vua.VE) dV . (13)
D D

The tearing modulus, defined as the derivative of G with respect of a, is
very classical in stability analysis of one crack or a system of cracks
[Nemat-Nassers et al. 1980]. This quantity depends on the rate

Ju
displacement 8_0‘:’ solution of the following problem:

A:Va—u‘—{:Vv dVv - a A:(Va—uq«.Vg):Vv dv - o A:(Vgl—li’— ):(Vv.Vg) dv
o o D Ja D Jo

mzj A:(V%%.Vg):(Vv.Vg) dv= I A:(Vua.Vg):Vv dv +J A:(Vuy ):(Vv.Vg) dv
D D

D
- 2a J A:(Vuy .Vg):(Vv.Vg) dv,
D

V' v, admissible displacement field.

From the numerical point of view, this formulation is convenient,

because the rate displacement problem (14) is the same problem as the
displacement problem (12) with another right hand side.

279

(14)



.. . . Jug . . )
Derlvmg €xpression (13) and choosing v:'(r)iag Inexpression (14), we get

the tearing modulus:

Ty SAEAY_ J Ax(Vug. VE)(Vug. VE) dv
Jo D
+ A;v‘)&;vaiﬂdv-za A;(VQE_Vg);VQ“—%dv
Jo ' Jda do oa (15)
Qo D
) vla o Oug o
+0 (V=L ve) (Dl .
fDA(V S0 VE(52.vE) dv
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