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ABSTRACT

The brittle fracture mechanics uses, simultaneously with the toughness
characteristics of materials, the strain energy release rate G which is an
important feature, particularly in linear fracture mechanics. This work is
specially focused on giving different ways to obtain numerically a value
of G with the aid of one crack hybrid finite element. Evaluating G is
performed in this paper with either the notion of stress intensity factors
or the method of virtual crack extension, both used on the mixed hybrid
clement only. Comparison with other published results is presented for
an isotropic material, and shows the applicability of the proposed hybrid
approach.
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INTRODUCTION

In  brittle fracture analysis, the strain energy release rate G is
characterized by the energy stored at the crack tip. Once associated with
an experimental critical toughness of the material, it constitutes the
primary parameter of crack initiation. If the stress field is correctly
evaluated around the crack tip, then G can be locally given either
“statically” in terms of the stress intensity factors or "kinematically" by
using displacements calculated near the crack tip (Bui, 1978). These two
techniques imply a refined mesh in the area of the crack if classical
(displacement) finite elements are used. We propose a more convenient
approach : only one super crack hybrid finite element is placed around
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ithe crack tip, and classical displacement finite elements are used
everywhere else. This type of element was primary suggested by Tong,
Pian & Lasry (1973). A refinement is no longer necessary and a good
stress evaluation is still obtained. The stress intensity factors are directly
available in the hybrid element and give a first evaluation of G. The
virtual crack extension method of Hellen (1975) is the second technique
used in this paper to evaluate the strain energy release rate. It is
particularly efficient here because the variation of the potential energy
concerns only the crack hybrid element. Two elementary stiffnesses need
to be calculated : one in the initial state, and the second after the virtual
extension. One application is proposed and compared with results issued
from literature : a crack in mode I placed in an isotropic material.

GOVERNING EQUATIONS AND THE PIAN PRINCIPLE

Local equations : for simplicity, the analysis is restricted to plane linear
elasticity and all the latin indices i, j, k and 1 vary from 1 to 2. A volume

Q made of N elements Q®is considered :

N
Q=11 Q® (1)

K=1
The equations to be solved are constituted by the small displacement
hypothesis (2), the prescribed displacements (3) on the boundary Iy, the
equilibrium (4) in each volume Q™ and the static conditions (5) on the
boundary I's. They are completed by an elastic behavior law (6) and
continuity conditions (7) and (8) along interfaces I'y; between Q%) and
QL.

gij(u) = 1/2 (uij + ;) on QX K= 1N )

uj =y on Iy (3)

0ij=0 on QK 4)

o oy =T} on g (5)
K K

eij( )= éijk)l cij(K) (6)
(K) (L)

uj = Uuj on Iy (7)
(K) (K) (L) (L)

Gijj nj = Cjj n;j on 'y (8)

Variational approach : a primal approximation is used in the major part

of the structure which is modelled with ordinary 4-node displacement
finite elements. No further information will be given here on these
elements because they are well known in literature. A mixed hybrid
variational approach is applied in modelling the area near the crack tip.
Pian's (1964) principle is chosen because it takes into account a dualized
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continuity of the stress vector at interfaces and it allows a kinematic
compatibility with the already existing displacement elements.

Pian's principle : the following admissible spaces X and U are defined :
- = - 20Ky
2(Q) = {‘t [T = ('cij), T = T rij € L4(QM),

T, € LAQ™),1,,=0/Q®,K=1,N } (9)

U@ = {v /7= (v), 3w € H(Q®), w® =v/3Q®,
K=1,N;v=0/T_} (10)

Then Pian's principle can be written as :

N
> 1
L (tv)= x§1 [ -5 J Sijir T T 49
Q

+ forynvar - [ 1iviar ] (11)
9Q® IQ®e r
g
where T.=0..n (12)

In (11) and (12), n; are the components of the outward normal to the
surface considered for the evaluation of T; (here, it is I'g with ).

Properties : the stationary conditions of this functional are :

(o, )€ £xU,V8T;€ Z,V8v,E U,

N
Z [ S o 81 d0 - fudt nar J=o
Q

(K) 2Q®
(13)
> sv. ar |- 03
G..n ov.d = T. ov, 4
=z ang.m” [ Bv,dr | Kz’[aﬂmirl ar ] aa
o

First condition (13) appears as a behavior law written for the whole
structure and relation (14) is equivalent to the virtual work principle.
Using two bilinear forms and one scalar respectively given as

N
a(o, )= X [ 8;,0,71,;4Q (15)
QK
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N N
b(T,v)=- X J'r..n.vidr (16)

K=1
2
N
L(¥)=-Z  [17yar (17)
IQ®ET,

Pian's mixed hybrid functional (11) may now be transformed into (18)
and relations (13) and (14) are then written as (19) and (20) :

L(t,C):1/2a(r,r)+b(r,$)-1.(3) (18)
a(o,T)+b(T,0) =0 (19)
b(o,v)=L(v) (20)

The solution (o, ?1) is a saddle point of Pian's functional; the works by
Brezzi (1974) and Babuska (1973, 1974) show that the system (19,20) is
equivalent to (21) :

Sup L (6,v) <L (5,0) < InfL (7,0 ( 21)
TE€E X vVE U

CRACK HYBRID ELEMENT

Introduction : the static and kinematic properties of stress and
displacement fields pointed out in (9) and (10) respectively are used. The

stress field inside the super element must be in equilibrium and is
chosen equal to the analytical solution for a crack in isotropic or
orthotropic material. As the super hybrid element will be used here with
linear 4-node rectangular displacement elements, the boundary
displacements are chosen linear for compatibility reasons.

Stress fields : if the crack exists in an isotropic material, the complex
function approach of Muskhelishvili (1975) is a convenient formulation
for the analysis of the problem. The final solution is, for example,
reported by Owen and Fawkes (1983, p 11). The case of an orthotropic
material is analysed by Savin (1961), and the complete stress field can
be found, for example, in the work by Courtade and Surry (1987).

Boundary displacement interpolation. The linear 9-node hybrid element
is shown in figure 1. The length between two consecutive nodes p and
p+1 is noted h, and s represents the coordinate used between these
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nodes. The two components u(s) and v(s) of the displacement vector
along the boundary are linearly interpolated and written as :

S S up
{u(s)}_[[_ﬁ O h 0] S
- u

v

v(s)

S S 1
Lo 1-= 0 —J p+
h h p+1
(22)
7 6 5
8
P— 49
9
1 2 3

Fig. 1. The crack hybrid finite element used

Using relations (19) and (20) results in an equivalent stiffness matrix
Khyb for the crack hybrid element, needing the evaluation of compliance
and boundary matrices implicitly defined in (15) and (16) respectively.
A Gaussian quadrature is employed for integrating these two matrices
and a specific procedure suggested by Owen and Fawkes (1983) is
applied over the volume.

OBTAINING G

Stress intensity factors : for an elastic isotropic material in plane stress
state, the strain energy release rate G in mode I is related to the stress
intensity factors K1 and Young's modulus E :

G =K?/E (23)

The relation is slightly different for an elastic orthotropic material : with
S11 = 1/Ex, S3p = 1/Ey, Si2 = ‘ny/Ex , and S33 = I/ny , it comes :

S,; S 1/2 (S 12 28,5, + S 1/2
G=(%) [(51112) +—IESL“—13] I k2 (24)

Here, Ex and E, are Young's moduli in x and y directions respectively, ny

is the shear modulus and ny is one Poisson's ratio of the plane xy; it has

to be noted that the isotropic stress intensity factor Kj is different from
the orthotropic corresponding value ki :
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K =k (IT) /2 (25)

Method of crack virtual extension : within the limits of linear elasticity
given by equations (1) to (6), the paper by Hellen (1975) gives the strain
energy release rate G in terms of variations of the potential energy IT and
the length a of the crack :

G =-0I1/8a=-1/2 Upy (8K /8a) Upoq (26)

Unod are the nodal displacements of the part of the finite element mesh
in the initial state, but which will be affected by the evolution of the
crack length : usually, this part consists of a lot of classical elements
because the mesh has to be refined around the crack tip. 8K / 8a is the
corresponding variation of the assembled stiffness matrices of the same
area. As a macro hybrid element is utilized, a refinement is no longer
necessary and the stiffness variation is evaluated only inside this macro
element :

8K /8a=[ Knyo(a+8a)-Kuyb(a)]/ 8a (27)

EXAMPLE

A central crack in an isotropic medium : to illustrate the ideas given
above, the example proposed in the thesis by Petit (1990, p 47) is
chosen: a symmetrical rectangular plate (half length 0.1 m, height 0.1 m,
thickness 1 mm) with a central crack of initial length a = 0.05 m. Young's
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Fig. 2. Finite element model with one 9-node crack element
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modulus E is equal to 200000 MPa and Poisson's ratio to 0.3. The first
case of a coarse mesh (figure 2) is only reported here. The kinematic
method uses nodal  displacements calculated near the crack tip as
suggested by Bui (1978); several authors such as Rice (1968) have
reported path independant integral based on primal formulation : this
integral is given here as Jint when calculated on the internal elements
and Jex; on external elements near the crack tip. The method of virtual
crack extension is used either with classical 8-node elements or with the
hybrid element. All the results are shown in table 1. NG is the number of
Gauss points per direction used for numerical integration inside each
eighth of the hybrid element (Owen and Fawkes, 1983).

Table 1. Results for an isotropic material

used method G and/or error K1 and/or error
MPa.mm-1/2 %o N/mm To

kinematic method -98 %

Rice integral Jip, 24.46 -172 % -85 %

(internal _elements)

Rice integral Je,, 25.55 -135 % -6.1 %
external elements)

virtual extension with 25.56 -135 % -6.7 %
displacement elements

stress intensity factors
hybrid element NG = 2 30.11 +2 % 2454 1 %
one term in the series

virtual extension with
hybrid element NG = 2 28.58 -33% 2391 -1.6 %
one term in the series

reference 29.54 2430

CONCLUSION
Two parameters can influence on the modelling with one hybrid finite

element : the number of complex terms included in the analytical
solution chosen for the stress field, and the number of Gauss points for
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numerical integration. When the 9-node hybrid element is completely
surrounded by other elements, good results are obtained with only one
term in the analytical solution complex series and two Gauss points for
numerical integration. The number of integration points has nearly no
influence on the values of stress intensity factors but evaluating G by the
virtual crack extension method is more sensitive to it. To avoid spurious
modes when the nodal displacements of the hybrid element are not
completely constrained by those of the environmental mesh, a higher
number of terms in the complex series may be necessary.
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