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ABSTRACT

Mandelbrot, the pioneer in fractals, et al. showed that
metal fracture surfaces are fractal in nature and introduced
(1) the slit island method and (2) fracture profile analysis
to estimate their fractal dimension. Lung gave two geometric
forms of intergranular brittle fracture. Meisel presented
perimeter - area and perimeter - yardstick analysis of
rectifiable curves and of mathematically constructed simple
fractal curves. Saouma et al. concluded after experiments
that fracture profile in concrete 1is indeed fractal.
Gol'dshtein et al. suggested that fracture consists of self-
similar multilevel energy dissipation process and fracture
is a multifractal process. Present authors have suggested an
equation relating critical strain energy release rate and
fracture surface energy in case of fractal crack for ductile

or quasibrittle materials.

11



User
Rettangolo


1. INTRODUCTION

Sei . <
clentists and engineers who laid the foundation and

built
Up the structure of 'Fracture Mechanics' always

taci
itly assumed that fracture profiles in materials are

smoo i
th plane in nature. Energy concept suggests. that

fra
cture should proceed through the path of least

resistance. This

'path of least resistance' ig not

neces
sarily a smooth pPlane. Observational facts indicate

that i i
fracture profiles in metals and concrete are always

very tortuous, rather than being plane.

Benoit Mandelbrot coined the term 'fractal' in 1975. a

fractal s
et e.g., Koch curve or Peano monster curve is more

'irr
egular' than the sets considered in classical geometry.

They

often fit the shapes in physical world like coastline

or B
rownian motion better than regular arrangements of

Smooth curves and surfaces [1].

2,
REVIEW OF PAPERS OF VARIOUS AUTHORS

M
andelbrot et al. [2] showed at first that metal

fractur
€ surfaces are fractal in nature and introduced

(1 it i
) the slit island method and (2) fracture profile analysis

to estimate their fractal dimension.

S1lit Islang Method

A f i
ractured steel specimen was plated with electroless

nickel ang i
mounted in an €poxy mount by vacuum impregnation
in orde i
r to ensure edge retention. The specimen was then

oli
P shed parallel to the plane of fracture. 'Islands' of
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steel surrounded by nickel appeared which on subsequent

polishing, grew and merged. These structures are called slit

islands. The islands contain 'lakes within islands' and

'islands within 1lakes'. The former was included and the

latter was neglected.

When islands are derived from an initial fracture

surface of dimension D by sectioning with a plane, their

coastlines are of fractal dimension D'=D-1l. The graph of log

of those

(perimeter) (x__axis) versus log (area) (y axis)

islands was plotted. 1In a fractal this graph is rectilinear

of slope D'. Authors concluded that such is indeed in the

case of fracture surfaces.

Practure Profile Analysis
This was based on Fourier analysis. Here the plated and

processed fracture was sectioned perpendicular. to the

fracture surface to expose it in profile. The profile's

sample spectra exhibited wide oscillations. Some were

statistical artefacts, but others reflected fundamental

lengths of the microstructure and their accompanying higher

Average was taken over five spectra taken

order harmonics.

from serial sections, and they were integrated from high

frequency to low. The fractal character of the surface was

tested by plotting the data on doubly logarithmic

coordinates to see if the curve has a large straight central
portion of absolute slope B', with B' =B - 1 = 6 - 2D. The
plots were indeed straight but over narrower ranges than the
Thus the fracture surface was again

area-perimeter plots.
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inf
erred to be fractal, and its fractal dimension was

estimated by D = 3- (B'/2).

L
ung et al. have been Publishing papers on fractal

nature of metal fracture since 1986 [3], [4]1, [5], [6] and
E i

[7].
In Ref.[3], author suggested that considering
E
ortuosity of cracked surface would lead to the relation
between critical cr
ack
extension force, Gc' and fracture

surface energy, Y . in the forms:

G 2 (L
e (Err e, Y

and

[

-1
G = 2(W-a)™7(L (€ ) + L(€1T, + o cea(2)

Equations (1) and (2) refer to brittle and ductile materials
respectively. E:i's are the yardstick lengths in measuring
tortuous crack length. Other parameters are as shown in
Figures 1. In equation (1), L = tortuous crack length and
‘L°=straight crack length. T:p.represents the energy expended
in the plastic work necessary to produce unstable crack

propagation at the crack tip.

Af
ter this, Lung gave two geometric forms of
intergranular brittle fracture as shown in figures 2 and

derived the equation.

b 3P

G =2 _Joi__

c Ts 5 ee i (3)
oi

where = i
Loi zero generation fractal length, 8, : = each
oi
mem ’ i i
ber's length in first generation and D = fractal

dimension of fractal crack.
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He preferred the profile shown in figure 2(a), because

{t consumes less energy than that in figure 2(b).

Later, he moved forward into ductile fracture. Here, he

aimply increased the angle shown in figure 2(a) by

@ - (PbL/L) = Pb, where P is the linear density of mobile
dislocations. The increment of angle by 8 is the

contribution of plastic displacement. Typical values of

total linear density of dislocations range from 106—107/cm

for cold worked crystals to 103/cm for annealed crystals.
WIth b QnglO_ch, the range of § is from 3x10—5 radian to

0.03-0.3 radian (1.7°-17°)

In ref.[4], the slit island method is employed to
measure fractal dimensions D of fracture surfaces under
plane strain conditions with the help of an image analysis
technique for two high-strength steels under different heat
treatment conditions and at different test temperatures.
Three-point bend tests were performed on the specimens used

for the fractal dimension investigation.

Then, the authors proceeded on the line of equation (1)

d ha i t he ffect
an changed \Cs to j:p which represents t e ive
surface energy (the sum of true surface energy and plastic
strain energy on a unit crack area) needed to produce

unstable crack propagation at the crack tip.

Gre = 2(LIEN/L(ENX, ...(la)
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According to Mandelbrot [1],

LI(E ) ~ 1-p
€;) =~ g -ea(4)

Lo is chosen 4SS a unit length. So,

6. = o 1-p
16 X €5 e s {53

For plane Strain fracture.

K2
By = wlO gy o B
IC s Y ) ... (6)
wh = i
ere KI = Plane strain fracture toughness,
E = Young's modulus
and Y = Poisson's ratio of materjal.
Then, 5
K
IC 2
----- (1 - 92 =, i
: » X, €]

or *
21"ch + 1n(1-92)-1ns

= 1ln (2 -
. Y&)) + (1 D) 1n E;i cea(7)
N this investj i
gation E, i) and j:p may be regarded as
constant, Therefore,

1

b & =

B Ko constant + -—- (1 . D) 1n €, «e.(8)
2 1 )

The fracture
toughness KIC depends fundamentally on the
frac i i
tal dimension p, Equation (8) jg consistent with the

ex
Perimental results. The fractal dimension D ig approxi-

matel i i
Y a linear function of the logarithm of fracture

B

toughness KI

s .
ome authors (8], followzng Slit Islang Method, pointed

out t i
hat the correlation between fractal dimension, p of
ml
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fractured surface and fracture toughness is a negative one.
This, however, is difficult to explain. Lung and Mu [5]
stated that Dm measured by SIM is not the intrinsic fractal

dimension, Do’ of the fractured surface of metals.

The measured dimension depends on the length of the
vardstick and has a quantitative relation with Do' Starting
from the basic equation relating perimeter and area of the
Koch initiator island, they have shown that when yardstick
length is small enough, Dm approaches Do' The origin of the
negative correlation between Dm and toughness is due to the
SIM of fractal dimension measurement. If the length of the
yardstick is larger than a critical length, which is the
yardstick coordinate of the point of intersection of two
curves (straight lines) in D -yardstick plane, a negative
correlation will be obtained. Thus, the critical lengths may
be determined as the transition lengths between curves of

negative and positive correlation.

In reference (6], the authors have again stated that
the dimension measured with perimeter-area relation is not
the real fractal dimension D° of the fractured surface and
it is one of the origins of the negative correlation between
Dm and the toughness of materials. For sufficiently small

yardstick 1length, a positive correlation between Dm and

toughness is observed.

Real fracture processes are quite complicated. A wide

variety of mechanisms play relvant roles : grain boundaries,
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inclusions, second Phase particles, etc. The authors have
analyzed the distance between two large inclusions and the
number of grains over the distance. High yield strength
materials have a smaller critical crack length for
propagation. It may induce more smaller cracks to propagate.
This makes the crack propagation between two small
inclusions easier. 1In such case the correlation between
fractal dimension of fracture surface and fracture toughness

is indeed negative.

In reference [7], authors have found that the grain
size and the average distance, between two large inclusions
(LI) or between two effective second phase particles (ESPP),
whose sizes are larger than that needed to form voids around
them, have an effect on the fracture of metals in the
fractal model. The roughness, shape and confiquration of
fracture curve depend on the external stress and also on the
microstructure of the material. During fracture, a lot of
voids are firstly created around the (ESPP or LI) as a metal
deforms plastically, and then they increase in size and
coalesce into void sheets, which ultimately form a fracture
surface. Each plastic pit on the fractured microsurfaces
corresponds to an ESPP or LI. The distance dt between two
pits determines the length of the fracture propagation
zone. The sizes and orientation of the grains within dt have
an effect on the coalescence of the voids. The curves on the

fractured surfaces are assumed to have the self-similarity

property. Their fractal dimension is given by
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b= it . e (9)
log (1/r)
Wwhere N is the (new) number of sides on the straight line
segment when a figure is superimposed on it and r is the
segment

ratio of the figure edge length to the (preceeding)

length.

-The authors hypothesized that the r in equation (9) is
s : i.e.
proportional to the ratio of dt to the grain size d, i

Two typical forms of intergranular fracture are

r oC d/dt'

shown in figure 3, which are exactly the same as figure 2.

Their fractal dimensions are

D (a) T e ...(10)
log («3 m)
log (2m)
D (b) = ’ m even
log (3m/2)
2m+1)
D (b) = e , m odd eee(1l)

log (3m/2 + 1/2)

Wwhere m = 1,2,3, .... is the number of grains on the

i i i D |is
stright 1line segment dt' The fractal dimension

approximately a 1linear function of the 1logarithm of the

grain number m.

The fractal dimension of the fractured surfaces can be
expressed by the microstructural parameters d and dt as

log (C1 dt/d) URTT

log (c2 dt/d)

i i the micro
where C1 and C2 are constants assoicated with
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Structure, f =
or example Cl =1, C2 =J 3 for figure 3 (a) and
Cl = 4/4 3, C2 =,4 3 for figure 3 (b).

Meisel [9) tried to formulate & generalized vyardstick
dependent Perimeter area relation. The length of a fractal
curve P(E) measured with yardstick E is given by

P(E) = pgl™D (13)
Where F anpg D are constant over the range of yardstick
length E of interest. The length of a curve at yardstick E
is the Product of a measurable number N(E) and E, i.e.,

P(E) = N(E).E «..(14a)
and so

-D
FE
«..(14b)

z
—~
t
~
]

Similarly the area within a closed curve at yardstick E
is the product of 3 measurable number ang E2. A  'box
Counting algorithm' ig applied in SIM. a rectangular grid of
Spacing E jg Superimposed over the island in question. The
number of boxes containing a section of coastline is defined
as N(E). The area in units of g2 of the island is defined as

the i i
number of boxes inside the coastline plus half the

number of boxes on the coastline.

In fractal characterization of fracture surfaces, the
eénsemble of islands are taken as (statistically) self-
Similar. Each islang can be classified according to its
characteristic length LO. Self—similarity implies that for a

iv i i
given ratio of yYardstick to characteristic length

m
i

____ ... (15)
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the ensemble of polygon approximations (corresponding to the

ensemble of islands) based upon the appropriate vyardsticks,

(i.e., E = ¢ Lo for an island of characteristic length Lo)

are (statistically) self-similar.

For self-similar island the number of divider steps
N (E,L ) = N(E) = F' el - F'E'DLOD ...(16)
where the constant F'(=F/Lg) is independent of E and Lo.

Similarly, the coastline length P(E,Lo) of 1island having

characteristic length Lo is given by

= = _ ,.1l-D_ D
P(E,Lo) = N(E,LO)E—N(E)E = F'E L, e..(17)

The area A(E,Lo) of an island having characteristic

length Lo measured with yardstick E is taken as that of the

equilateral polygon of side E constructed to evaluate

P(E,Lo).

For self-similar islands, polygon approximation of the

same E are similar and the area of a polygon approximation

of given £ is proportional to Li. Thus,

AGE,L)) = G(E€).L° = c(g) e?/g? ... (18)
where G( € ) is the 'area shape factor'.

Equation (17) can be rewritten at fixed E as

_ ,.1-D. D _ D
P(E,L)) = F'E" L~ = C(E)L_

o
Z)D/Z «..(19)

c(E) (E%/ ¢

I

where C(E) is an E-dependent constant.

Thus, one may combine equations (18) and (19) to obtain

P(E,L)) = C(E) (A(E,L_)/G(E)]"/2 .. .(20)
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In ; :
conventional perimeter-area analysis, one takes

twice the slope of the log-log plot of P vs A for fixed E as
the fractal dimension. Following Lung and Mu [5], Meisel
defines the 'measured fractal dimension' D by

D./2 = [d 1ln (P) / 4 1n (A1,

[d In (P/E) / 4 1n (A/Ez)]

]

E .. (21)

Thus equation (20) implies that

D/2 = -[d In (P) / 4 1n (82)1E

= “laln(P) /da1n (6/€%)1; 1d 1n (6/€?) / a 1n (e
i E
[d1n (P) / a1 (6/€%)), (1-d 1n (G) / a 1n (g2)]

] E
= Oy/2) [1-aln () /am (g2

= (0/2) [1-d1n (G) /d 1n (€2)] .e(22)

Vi
ictor Saouma et al. [10] proposed an experimental

a
pproach to properly understand fracture of concrete. They

4 . . :
etermined fractal dimension of a profile across a fracture

surface using the box method of Barton and Larsen [11] by
s : ’

uperimposing on the profile trace, a grid of square
elements of various sizes. The number of grid elements

crossed by the profile trace is counted (N), and plotted

agai : ;
galnst the grid element size (r). Fractal dimension is

calculated by the usual formula D = 1n N / 1n (1/r)

The three specimens studied were cubes 36 in. on a side

Ea i
ch of the specimens contained a different range of
AGE ; .
ggregate size. The maximum aggregate size in concrete
£ : N
ype I was 0.75 in., in concrete type II it was 1.5 in and

§ :
N concrete type III it was 3.0 in. The specimens were

fr ; 2 .
actured by inflating a cylindrical packer in a four inch

22
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diameter axial borehole, while the specimen was subjected to

uniaxial compression perpendicular to the borehole axis.

The profilometer used for measurement of the roughness

of fracture was fully automated. It scanpned a sample by

computer-controlled placement of a

means of a motorized,

Linear variable Differential Transformer.

Following the experimental test, the fractal dimension

of ‘the fracture surface roughness was determined using a

computerized version of the box method [1,11]. The length

and spacing between profiles, and the minimum size of the

box sizes used in the fractal analysis are presented in

Table 2 Saouma's paper. That is reproduced below as Table 1.

Profiles' geometry and fractal dimensions

Table 1.
II crack direction I crack direction

Charact-
eristics 0.75 in 1.50 in 3.00 in 0.75 in 1.50 in 3.00 in 1.50 in
Profile 8.0 8.0 8.0 8.0 24.0 24.0 1.0
length
Min. Box 0.045 0.045 0.045 0.045 0.125 0.125 0.0055
size
Readings 240.0 120.0 120.0 348.0 40.0 40.0 240.0
inch ¢
Profile 0.1 0:5 0.5 1.0 0.5 0.5 0.5
spacing
Fractal. 1.33 1.10 1.1 1.12 1.09 1.07 1.18
dimension 1.11 1.09 1,11 1.10 1.08 )..08 1.12
(D) 1.12 1.09 1.11 1.18 1.07 1.08 1.15

1.1 1.02 1.12 1.09 1.07 1.09 1422

1.10

1.10

1.10

1.12

1.12

1.10

1.10
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It was concluded that fracture surfaces in concrete
were fractal over the range of scales measured. The fractal
dimension for the specimens tested was approximately 1.20 at
the microscopic scale and close to 1.10 at the macroscopic

scale. The roughness of the fracture does not vary

Significantly with fracture propagation direction.

Gol'dshtein and Mosolov [12]) pointed that a fractal
crack g characterized by a multiple-scale hierarchical
structure of the singularities of the elastic fields. The
fracture Process is accompanied by a cascade Process of the
transfer of elastic energy from large scales to smaller

Scales, finally, to the microscale, where the energy

dissipates as it is expanded on the formation of a new

fracture surface.

When the crack tip moves by A1l on the microscale 1,
the elastijc energy released is
44U = G, a1 ... (23)
They assumed the following asymptotic relations in the

Neighbourhood of the tip of the fractal crack. g denotes

elastic modulus.

K
LY —;:— rl-“¢i (8)

... (24)

Tis5vk c=%e  (g)
ij ij

where K jg the fractal stress—intensity factor, and r is

the distance from the crack tip. The specific density- of the

energy released in the case of a smooth-edged crack is
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characterized by Go AJKi/E- Taking equation (24) into

account, it is easily seen that

2

K
e nJ —--— ]_1—2 .-.(25)
@ E

Next, they calculated the elastic energy released,
taking into account the crack on the nth microscale ln=l/Rn,
where R is the scaling parameter that determines the change
in the crack fragments during scaling. Subsequently, they
got the following relation.

G, = (1) rv 1Pt + 5.5 (26)
Comparing equations (26) and (25), it is seen that

D-1 =1 - 2«
where

b 3
X =, -=- (2-D)
2

On the basis of relations (24) and (27), they obtained
an asymptotic formula for the openings, A4 u, at the tip of
a fractal crack:

u v rD/2
It follows from (24) and (27) that the SIF is characterized
by an (anomalous) dependence on the macro-dimension of the
crack:

VR .ea(28)
The criterion for the limit equilibrium of a fractal

crack can be written as follows:

fo



£ i P
where KIC is the critical value of the SIF which
characterizes the resistance of the material against the

growth of a scale 1 crack.
As a result of relation (28), they obtained
k. £ ~ K l(D—l)/2
1c IC ... (29)

where KIC is the cracking_resistance to macrofracture.

In contrast with K the fractal cracking resistance

# Ic’

Kic 1s a gquantity of variable dimension, and since the .
fractal dimension D depends strongly on the fracture
mechanism, K§C is determined by the entire fracture
process.

On going from one scale to another one can generally
expect a change in the fracture mechanism, and, therefore a
change in the dimension D. In other words, fracture should
be considered as a multilevel (multifractal) process. The
dimension of the fractured structure is 'scale-dependent :

D = D(1)

3. PRESENT AUTHORS' VIEW

Present authors feel that the characteristic inherent
nonlinearity in fracture of Gquasibrittle and ductile
materials can be expressed by writing the equation relating
critical crack extension force (Gc) and fracture surface

energy (ﬁ:s) in the form

G
c

A Lo
(2 [ -2 ...(30)

-

PN

Loi = zero generation fractal crack length, e’oi =

yardstick length in fractal

Here
crack, and D = fractal dimension

[Ref. figures (1) and (2)].

Choosing Loi as a unit length, equation (30) becomes :

G

A 1-D
e = 2" €4 ...(31)

Hence 1n G A 1ln (2“CS) + (1 -D) 1n eoi

A 1ln (ZIS) + B - s 6:32)

where B = (1 - D) 1In €
If x = 1n (Z‘Cs) and y = 1ln Gc, (32) gives

y = Ax + B <.« (33)

The constants A and B will have to be determined by least
square technique based on experimental data. An example from

fracture of concrete will be presented here.

Calculataions for usual least square fit of y lead to

the following equations

n n
Ay "i:' ¥ BZ x5
i1 i-1

i=1
...(34)
n n
A;;E:. X3 + n . B = ;ZZ:? Yy
i=1 i=1
Mechanics

In ref.[13], there 1is a chapter on 'Fracture
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Applied to Concrete' by R.Narayan Swamy .

(4), he gave one

concrete. The present authors accepted them and in between

In tables (3)

range in each case of Gc and
s

each of them Placed nine more values uniformly spaced.

and

for

Table 2, Calculations for constants A and B
Si: (gjm) ?;932) ¥InG,  x=ln(27,) x* =
1. 8.40 7.00 2.1282 1.9459 3.7866 4.1413
2. 8.52 7.55 2.1424 2.0215 4.0866 4.3309
3 8.64 8.10 2.1565 2.0919 4.3759 4.5110
4. 8.76 8.65 2.1702 2.1575 4.6551 4.6822
5. 8.88 9.20 2.1838 2.2192 4.9249 4.8463
6. 9.00 9.75 2.1972 2.2773 5.1859 5.0037
7. 9.12 1a.30 2.2105 2.3321 5.4389 5.1551
8. 9.24 10.85 2,2235 2.3842 5.6842 5.3013
9. 9.36 11.40 2.2364 2.4336 5.9225 5.4425
10. 9.48 11.95 2.2492 2.4807 6.1540 5.5796
11. 9.60 12.50 2.2618 2.5257 6.3793 5.7126
:E: 24.1596 24.8696 56.5939 54.7065

Now, one can

Table 2 ijin equations (34) and solve them simultaneo

A and B.

Solving them, we get

A = 0.2309 and

28

B = 1.6743

put the numerical values obtianed from

usly for

A o

Hence equation (32) relating critical crack

force and fracture

form :
lnGc = 0.2309 1n (Z“CS) + 1.6743
Also one can write
B = (1-D) 1n eoi = 1.6743
(1-D)
or 1neoi 1.6743
(1-D) =
or eoi 5.3350
1n (N)
From the expression D = ——ceeeo_. , one gets
In (1/r)
1n (N) In N
D = ecoecmccmamaccaac T T
ln (1/€oi) in € ;
- _ - -D
or 1n N Dlngi 1n em_
_ -D
or N = eoi
From equation (36)
g o _ 5330
oi
E;oi
comparing equation (37) and (38)
5.3350
________ = N
€oi
So, for N = 30, e al = 0.1778
and
1n 30
D T —— = 1.9695
- 1ln (0.1778)
29
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surface energy can be written in the

... (35)

...(36)

... (37)

...(38)

v (39)

e o

B o

g i
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In this way, the authors have calculated a set of

values of fractal dimension D and length of each member in
first generation of fractal crack against a set of values of

N. They are shown in Table 3. The last column shows values

of G, (N/m) against g = 3.5 J/m2. The fractal dimension D

decreases with increasing segment number N. This tallies
with the observations given in Table 1 of Ref.[7].
Table 3. Fractal dimensions for different fractal cracks
Sl. Zero Number of Length of Fractal G
No. generation members each member dimension (NJm)
fractal in first in first (D)
length generation generation
(Loi) (N) ( oi
1. 1 30 0.1778 1.9695 8.3623
2. 1 35 0.1524 1.8901 8.3629
3. 1 40 0.1334 1.8311 8.3602
4. 1 45 0.1185 1.7852 8.3647
5. 1 50 0.1067 1.7482 8.3610

4. CONCLUSIONS
Fractal geometry is one of the most rapidly developing

subjects in these days. Books, reports and papers covering

various aspects of the theory and applications, including

applications to fracture mechanics, are piling up in huge

amount day by day. The authors do not claim that the paper

presents state-of-the art on deterministic fractals in
fracture complete in all details. But it is hoped that it
will be helpful to the people interested in application of

fractal geometry to fracture mechanics.
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Ideal brittle fracture in glass
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Figure la

Figure 1lb

Elastic-plastic fracture in metal

Figure 3. Two typical forms of intergranular fracture

Figure 2b
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Figure 2a

Intergranular brittle fracture

(a) (b)
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