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ABSTRACT

This paper presents current state in the field of boundary
integral equation method applied to static problems cf three-
dimensional anisotropic elastic bodies.
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INTRODUCTION

Fundamental Solutions. In t he three-dimensional case
fundamental solutions for the static problems can mostly easy
be constructed by the use of Fourier transform applied to the

operator of the equations of equilibrium yielding
corresponding symbol. Fourier transform inversion of symbols,
giving corresponding fundamental solutions, is succeeded

only- by one narrow subclass of elastic orthotropy, which
includes isotropic and transversely isotropic materials, see
Kroner (1953). For plane problems the situation is better,
and analytical formulas are known for elastic materials with
arbitrary anisotropy, these are mainly due to Kupradze and
Basheleishvili C(1954).

¥hen three-dimensional problems with arbitrary anisotropy are

concerned, only numerical met hods can be used for
reconstruction of the fundamental solutions from
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corresponding Symbols. These methods can be divided into two
groups. The first one is referred to disintegration of the
Lebesgue’s Mmeasure on hyperpl anes CRadon transf‘ormation).
Apparently first, this method was  applied to static
elasticity problems by Lifshitz and Rosenzveig €1349), and to
dynamic Problems by Hutor janski c13985)., Numerical experiments
carried out by Wilson and Cruse C1978) revealed, that for

The second droup is based on multipole decompositions of
Symbols, i.e. decompositions into the series of spherical
harmonics. That, by the use of Bochner-’g inverting t‘ormulas,
Bochner 1985, pProvides fundamental solutions either in the
form of multipole Series. For the fundamental solutions of
statics this method was applied by Kuznetzov C13989). The
latter method jsg used in the Present artjcle either for
fundament.al Solutions and for singular or strongly—singular
OPerators of the direct BEM formulations.

Periodic fundamental solutions are needed when Perforated
media or Composite materials are regarded. The first attempt
to construct Such solutions was due to Hasimoto C(1956) who
applied i{t to investigation of the Stoke’s flow throdgh 2
Periodic Array of spheres. For general anisotropic elastic
media Periodic fundamental solutions were constructed by
Kuznetzoyv C1991a).

Direct Boundar Element Met hods. The rirst direct B_LEM

formulat.ions in the theory or elasticity is, to all

APpearances, due to Kupradze and Alexidze C1a653), Their
Approach was based on the Somigliana identity wrj tten for the
Supplement Q » where (@ js an open region under

consideration. That aPproach leaded to t he first-kind integ-
ral equations over unknown surface densitijes.

The “directn 2PProach which leads to the Second-kind integral
€quations for the second boundary-value problem is due to
Rizzo <1987)>. Analogous integral fquations can jin Principle
be obtained for other boundary-value Problems of anisotropic
elastijic bodies, Ssee Kuznetzov 1332,

Dislocations and Cracks_in_Anisotro ic Media. Dislocations

are of majin inTe:‘est for anisutropic crystals, mainly one
narrow Subclassg ot orthutrnpic crystals, which includes
elastjc transverse isotropy, was considered in t he
three-dimensional case, see Willis 1364, Tuphol me C1374).
In recent " Publications CKuznetzov,lQle,lQQle) were
considered Problems or interaction and arising of

dislocations in general anisotropic media by the method of
multipole decompositions.

Plane three-dimensional crack problems were considered by
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based
Willis (1968) and Kuznetzov (13990) Their :pi:?:§zlgism9th0d
i ors.

f strongly-singular opera Tihed
on the an:igs:i iunin et al. C(13978), who deve%opeidgihioigs'
va:hp;og? transformation strain applied to ellipso
netho

on applications BIEM analysis to fracture

e anics waenkS Two-dimensional problems

: ~
:
with cracks of arbitrar Y 1oad1ng were considered by Balanford

i also cracks on the interface
s (1gst‘];‘)e.re::°n!:;;‘:.1de;:fs approach was developig r:z
ool dotoin s d Perelmuter (1990) and implemented 1n. tah pcrngs
ckace = alnwin to describe 3-d construct:lons wi cracks
pazkag:ur‘afla:e agd body forces in 3-d and axially symme
under

bodies.

BASIC OPERATORS AND SYMBOIS

Init a opl1c homo 1eo0 > e is regarded
ially nisotr b § § ger us elastic medium g »
with equatxons of equilibrium written in the form

(1)
A(Q )u = - div C--(Wu)

C is the fourth-order
The given anisotropic

where U is a displacement field,
so § is symmetric

i i icity tensor.

elliptic elastici i

Str‘?“gl}'s assumed to be a hyperelastic one,' .

medium i ' rphey P"nlj
with respect to extreme pairs: (3 = U

Fourier transform
) = [ 3 F(x) exp(-2nt x-8) dr
R

applied to the operator A gives its symbol:

= (2)
A¥(8) = 47" §-C-¢

; <o a
Similarly the surface-traction symbol is define
i

(3)
™(mWw,8) = 2l v-C-¢

e s e rma o o a T < (30-
Her Vi th unit no 1t a bound ry surface

i of the
i symbol A the symbol of fundamental ‘so’];‘utxon
::u:giozs C1) can be represented in the for
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EY(0) = 4%, (8) / det av(p), (4)

where Av
A 5 is a matrix of algebraic complements of A C P

This expression shows th
» at E¥ is stron 1
positively homogeneous of order -2 with resgec):'t :;l’l?gtl-lc and

R3 of the class (™ < m=1
g % 2 1; X > 0, An operator [ -
ary conditions on dQ can be defined by the followingoi‘o:::ra

B(v,dx)u = (M-u + N-T(v,ox)u)l =g (5)
an

where M, N are Square matrices (o)
. perator

:Zam.l;l);::calc. e:fression allows to describe dift‘e?en:yty::sngix?
s fir:t, :n tions, namely: M=I N-= O, corresponds to
o oundary-val ye problem; N = o, N = I corresponds
vl ol ecdond one; M = e, N=7TI - Y is for thep the
tha fort:no?‘:y—\;alue problem; N = I -_ 2V, N = pop is for
boundary—value p::bir;":r:alogous way can be represented other

FUNDAMENTAL SOLUTIONS

onee iodic Case
r e Multi 1 i
N pole decompos.l tions applied to the

2n+1

E@) = » ,
e NS S AUSIANT I 6)

where Y’l are spheric =
X P ical harmonics, Enk are matrilx coeffici-

fn't:s determined by the integration over unite sphere Taki
C: obaccount Bochner- s inverti Ng formula the expan;lon Cg?
N be inverted giving corresponding fundamental solution

E(x) = 0 2n+1
- n-o,za’_.-‘rn kE:l Enk YZ(I') / |z (7)

eri mental solution E
P odic Case. Looki ng for periodic fundaj
in the form of tl'igonometx ic ser les we obtain
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x;,(x) = 1/VQ T E¥(m*®) exp(-2m{ m*-x) (3)

A% *
m EAO

Here A: is the adjoined lattice without zero knot. It should

be noted that EFI’ is defined up to an additive constant.

Following formula shows, that E"J(x) possess the same local

as nonperiodic fundamental solution

G = C°(Q,RPeR) (9)

properties,

E'(x) = E(x) + G(x),

Weakly-Singular, Singular and Strongly-Singular Operators.
The multipole decomposition method can be applied for the
construction of weakly-singular, singular and
strongly-singular operators, arising when elastic potentials
and their derivatives are confined on the supporting surfaces

(Kuznetzov, 1992).

DISLOCATIONS AND CRACKS IN ANISOTROPIC RBODIES

Plane Cracks in Anisotropid Media. Let a plane crack lie in
the pl ane . The displacement field around it can be
represented by the double-layer potential with the unknown
density which is actually a jump of displacements on the
crack boundaries. The kernel of a such operator is of the

form

G(x’,8') = lim [ T (v ,8)-E"(&)-T-* (v_ &) exp(-2mit’z”) dr-
x" >*0

V=0 - Qv v, £ = &y ., X' =2 (10)

Here and so forth sigyn refers tou Fourier transform on
variables belonging to tibers of cotangent bundle T30
and if no confusion can arise operator and its symbol or
amplitude are denoted by the same letter.

Integral in C€10) can be expressed in another form
G¥(8') = - sym [ (Zﬂii);(ﬁ’-C-E’)-H EV(E',0)-(8'-C-p) +
o £
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= @R Cv)E¥(8,0)- (8’ Cov) +

+@TOZRC-8) BV ,0) - (0-Cow) +

+ (2Tl (e ‘C-v)-0 .E”(¢',0)- (v-C-p)] (11)
In 11> H:,.E'Cg‘,o). is the zero value of Hilbert-s trans-

formation on E”:

E¥(§)
2mt £~

H..B°(8',0) = v.p. f . (12)

Ot her symbols in 11>

are defi. i
account C11), we obtain Sfined s dar g Tallng: . dntia

Pr i
oposition 1. Matrix symbol GS is a symbol of the matrix

P-d.o. of the class SLC@Q, 33®R%-

Th ~ e
€ sSymbol GO Can also be represented in the form

G = - @n) 1212 v (13)
where Vo = S-l. Fourier transform of ¢173) gives

G. = .

5 v A (14)

Decomposition C14> implies

zizfosition 2. For any function g = HS(CQ,RB), 3=z 1
> usion of the pole vicinity (y , in evaluation the strong-

ly-singular int s Y x
O(mescw 55, tegral  GC@Cx gives an error of the order

i;:f)lilnl:": ::1& Preceding proposition shows, that evaluation of

iy gc S with the kernel \G can be implemented by the

oy g ompu.t.er programs on numerical integration provided
e pole vicinity js excluded from the analysis.

An analogous approach can be applied to the analysis of the

stress and displacement fi
. field E -
i anisotropic media. ©lds around isolated dislocations
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