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ABSTRACT

In the Ist part, near—tip fields are constructed analytically for a quasi-static notch or crack grow-
ing in an elastic—creeping damaged materials. In some cases the relation between the crack growth
rate and the loading parameter can be determined. The solutions degenerate into Hui &
Riedel(1981)’s solution for undamaged material. In the 2nd part, crack—tip profiles for growing
cracks in polymers are simulated numerically, and diverse patterns are observed.
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1. INTRODUCTION

A study of asymptotic fields taking account of damage effects in fracture process zone is funda-
mental to deepen our understanding previously established through classical approach (Hwang,
1988). However, few results have been obtained due to the lack of correct formulations as well as

given by Hui and Riedel(1981).

In the above, cracks at critical state are conventionally assumed to propagate along a straight
frontal path. The experiment observations on a loaded pre-existing crack prior to catastrophic
growth, however, occasionally reveal the formation of intricate crack tip profiles, like superblunt-
ing (Fu et al.,1991) and crack tip branching (Ozmat et al.,1991). Little is known theoretically about
different evolution patterns of crack tip profiles. The geometry of various crack tip profiles reflects
the highly nonuniform deformation near the crack tip, and is critically dictated by the specific
damage accumulation law linking to the material microstructure. Section 3 reviews the numerical
simulation of crack tip profiles provided by Fu et al. for semi—crystalline polyproplene(PP)
co—polymerized by high density polyethylene(HDPE) and further modified by SBS elastomers
(Guo and Yang,1993; Yang et al.,1993). Five typical crack—tip profiles simulated are presented
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herein which are featured b i 1 i
. - y crack tip superblunting, branching. sharp notch
with possible material detachment. ¢ ’ 1 plunied noteh

2. PROPAGATION OF FAILURE IN CREEP DAMAGE MEDIA

5 ; .
:l-%creeg rupture. The evolution of damage with time s assumed

to follow the law
&= Dlxa, FA =)o, U +0) (1 =), W

and the damage effect on the stress / strain rate lies in

5 I+, 1 =2y, 3 n=i ~n
£ z 5, I akk5,/,+§Eot s,(1-w) 2)

whi 3 . . . . :
f€ g, 1s the maximum tensile principal stress, g, is the von Mises equivalent stress and s is

:Foe) Sl);s}s, deviator. In Eqs.(l) and (2),material constants are £(Young's modulus), v(Poisson’s‘ ra-
! » Blthe cree_p coefﬁcxcn_t). D n(the creep exponent), y,¢ and k. Note that the constitutive
quations remain valid until the specified rupture criterion, i.e., w = | or ¢ = o 0<w.<1) is
reached, ’ ! '

5 )
;~Z~M@. Fig.1 shows the notch (with an angle 26, undetermined) geometry, where

3eii§:;S;ar;(x[.});.z)—ccl)c')rdinaze system with the z-axis lying along the failure front together with a
1 the positive x—direction. In this section, the so—called ”, inuity” i i
g Gamane ? oy g e ed “continuity” y is used and is re-

X
Fig.2. Variation of 8,/ m with y

Fig.1. Notch geometry

I ;
: accordance with the notch model, a seperated form of the continuity y and the stress ¢ . near
the tip, !

s v
v~ w(g), o,~r'T, () 3)

IS assumed where 6 > and y <0 are required. It therefore follows that the notch half angle §
. N . “
can be uniquely determined by supplementing the rupture criterion condition,

limy(r. £ 9= — g y— (0, for 650
res 4 {¢/=l—wl>0, Jor 6=0 )

Ll_Jsmg EQS.(U‘({) and based on the usual small strain compatibility and static equilibrium equa-
10ns, the analysis leads to the asymptotic stress and damage fields which are briefly reported
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below, where only antiplane shear results are presented because of the limitation of space. For the
s of antiplane shear, non-zero stress componentsares, =g and O, =0, .

"1 Asymptotic solutions for rupture criterion ¢ = L. When the asymptotic stress field near
the notch tip is dominated by the elastic strain rates, we have (see Guo,1992)

a (r.0) , sin(y + 1)8
=20,r'(y + 1) .
a,(r.6) cos(y + 1)8
20, + D/ V3 =+ DD, .
‘”(r‘w:{[ o7 : I }u a °’,"~p(g) (5a)
(1 +y0)d
with
| = =1+
1=9"(), 6= . (5b)

-6, /m I+o

In (5a) the factor ®, is an unspecified factor and depends on the applied load and on the crack
yrowth rate, B=(v/3)""'g and D = «3)'p. Asf,—0, y— —1/2, we have the degenerate
case of elastic sharp crack and @ refers to local stress intensity factor. The angular distribution
function of the continuity in (5) is the solution of the following one-order boundary value prob-
lem

I+

ko vcus9~1+l.. (‘PH')/SI'"G:L W) =1, ¥ln—-6,)=0. ©
124

The prime denotes the dertvative with respect to §. The variation of 6,/ = with material paramet-
er x is plotted in Fig.2, where the solid and dashed lines represent the nontrivial and trivial 6, =
n/ 2) solutions of 6, respectively. Consequently, */L(z) and § can be easily computed from (5b).
The asymptotic fields (5) remain valid if

A+ 0)n=D=nyh" ) >n—(1+g) M
On the contrary, if material constants n,x and ¢ satisfy such conditions as

_ L n—(1+¢)
n<l+o, y<n-—1, y (1)<“+(p)(n_”_nx (8a)

or
L n—(1+¢)
>1+o, >n—=1, vy (> y b
n>1+e, x>n y (0 R O e (8b)
then elastic strain rates and creep rates have the same order of magnitude near the notch, and the
stress and damage fields become

0) = S d T+o—n “IVT 6),
0"(" ) an[[(GB) w/D—n]l/( [ ).r] 1()
o, e Y LA CER )
Vo) =p 22 (GB)a_J ’ ) w(o) %)
where
n—(1+ o) A—~l— 95)

TTUF O -D-nz ° +o)n—D—ny’
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azncli. tf;lc(é;;c:tolrs a—f-::d i" a.re i;n;oduced to normalize T.(0) and ‘¥(9), respectively, j.e., T,(0)

Bt ha. ) subscript “n d?notés the dependence of a  and B, onn, L @ and k.
W gmwiht aes s}igerfe;tu;; qf bemg.mdependem of the remote loading and the prior history
el e o (9)1.e Th(e :;ga;c;rRé::sctI;lLDgl). Only.the current growth rate ¢ and material
iy ution functions can be determined by a system of

ential equations derived from the co ibili
mpatibilit i i
and Hwang,1993), which will be not pursued gerlc.] Y and damage rolution equations fsee Guo

2.4. i i iteri
<4._Asymptotic solutions for rupture criterion w=o <l For the rupture criterion w, <]
two forms of asymptotic solutions are also obtained as in subsection 2.3 ! ‘

he Case y (Z) =1/(n— l) -
¢ - Fory > i i i
T > ) | F (Z) 1/ (n l), the notch tp stress field 18 given by (53).

.,H‘/ x‘y ®) an

Vo8 =y + DO + D/ VT s
L+ )iy (1 +y"p .

ot

where v) and 7 are
0 the same as in (5)' but the an ular function ¥ (6 1S specified by the
g t | ( )

¥ cosf —

7y me= L 0=, ¥ (n—6,)=0. an
Note that (11) and (6) have the sa i
me th
oy L( Jand . mathematical structure.
y (x 1/(n—1) andx<n—]:Inthiscase,wehavc

dw/" 1/7(n=1)
GEr) T (6),

[/ V3 =k + Da 1 G4y »
(1+<p)[l—x/(n—l)]a'w,’ (GEr

o,(r8)=qa (

)z/(~-l)—-

br, (6). (12)

v(r6) = v, +

As in (9),the factor & s introduc i
: E . ed here to normalize T (g). ¥ () ; i
solving the following equations ‘ (i (12)can be S

w 6——1\ 7o: -
T TS = Y sine = T e), ¥ O=1,¥%@x-5)=0 13)

where 7(9) = : . i i
e 7(0) =/ T(6)+ T,(8) is the angular function of the equivalent shear stress. For conve-

:;::::[._ lhle ;oluu‘ons (5),(9),(10) and (12) correspond to the cases named LE,EE, LF and E,F
tvely in the work by Guo (1992). It_ is obvious that the well-known Hui—Ri[edzél solution fl'or'

25. T he crack rowth rate. Under small scale yleldln conditions
b g

, the creep crack growth rate
can be evaluated accoxdmg to the present E[Ez and El] cases of SOIUUOHS Ma[Chlﬂg at l// (r &

)

= 0) = Ithe solutions and i
the elastic singular field characteriz i i
ed by the stress intens t
one has the growth rate o freror K

D )(n—l)/(n—l~1) — s

a=17( GBK >
GB m (14a)
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vhere /- 1s an integration factor and is defined by

[’ 27‘[1j / i - K::]ij"(iﬂ. Jor E|E2
[ = I+ 0=y /(n=DI0—y) ,_ - (1+0Xn=3)+n2=yp)
a ian; — g 2io=vsa-n v ela=deai-g for EF
L [(x/\z}—rc+l)1n]!b,

(14b)

I'he results show that a'OCKfII - Riedel (1990) has arrived at the same conclusion using self—similiar

malysis.

3. DAMAGE INDUCED CRACK TIP PROFILES

3.1._Damage modelling. Taking into account of the deterioration effects on polymers by plas-
tic flow, stress triaxiality and initial draw direction(IDD), a damage evolution law could be ex-

pressed as

. 37
@ =R(S,008", R= Af6)exp( GE“ ) (15a)

2

where ¢ and g, denotes the J, flow stress and the mean hydrostatic stress, respectively and 6
characterizes the inclination angle between the maximum deformation rate and IDD. The function
R(§,9) =dw/ de’ is referred to as damage rate modulus, and the amplitude factor 4 is inversely
proportional to the failure (logrithmic) strain E; when fibrillated chains reach their limit stretch-

ing ratio. The orientation fuction A6) in (15a) describing the damage anisotropy induced by IDD
and normalized as unity for the degenerate case of damage isotropy, is defined as

007-20‘*’(1 — &E)sin 2? - (156)
neos2f + V(1 — )[4 —(4¢ +n )sin 26]

f8) =2

where two dimensionless anisotropic damage parameters:¢ and n are incorporated in (15b). ¢ de-
notes the anisotropy of Hill’s type which measures the relative damage contributions between
chain rupture and chain shear, while 1 gives rise to the Bauchinger type anisotropy (see Guo and

Yang, 1993).
In a combined hyperelastic and viscoplastic framework at finite deformation (Moran et al., 1990),

one has the following constitutive formulations

)], (16a)

S=(1- u))[}.ol()g(detl"')E7l + 2 F— Cc
¢ (16b)

D’ =¢’(=C-S-0)

[
Q|

2 ; ; . == T .
where £ and p4 are Lame elastic constants in the reference configuration. C=F" - g+ F* is

the elastic right Cauchy-Green deformation tensor with F° being defined by a multiplicative de-
composition of the deformation gradient F, and gbeing the covariant metric tensor, S’ is the
deviatoric part of the symmetric second Piola-Kirchhoff stress tensor S, and D’ the plastic
deformation rate with isotropic hardening which are all described in the intermediate configura-

. y ; “p . .
tion. The plastic strain rate ¢~ is written as

e =t 6/ HE ) )" ~1] 72HGE ) (17a)
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where

HE w)= (1= w)g (1 + £ /e,)"
(176)

is a hardenin functi i
cti .
and strain : on. With exponent v, 7, is the reference stress, e, and & are referen, i
rate, respectively and m is the rate sensitivity exponent ’ ! cc stram

3.2, Numerica] :
ey o al simulation F ;
. the quadril i :
B-bar method f, > or q rilateral Isoparametric eleme.
) = . . nts to ac
terion is phracey llnrar;ear ncompressible deformation (Moran et al., 1990), the eler(r:loerxllltnil'o?ate th'e
averaging sense. The clement damage evolution can £>e writt e eni-
ritten as

5 }
a — J‘V' odv (
18)

NINT

u9={;J!H,[R(§“,,9HIJAE’JI}/{'z JH o

where NIN] is th i 1 i i W, acobian
€ Gaussnan mtegratlon points within an elemerxt I and H are the J bi
T ! 1

and weight coefficient i-
of the i~th i i iv y
- : t Gaussian point, respectively. After obtaim'ng AQ, one can

Q.,=0 +20
(20)

The subscupts n + efer to the in ants of ¢ an €spectivel In the numerical
and ” n 2 p
17 r r St d ¢ r t Y.
n LR

calculation, the com i
: . plete failure of the element is 4
c efined = i
sponding nodal force will be released in 5 number of‘loadlil:ag stzgsn il gk fhe corre

ampliiled inner la i Fi
yers in lg6b near the crack tip reveal a blumed notch tip profile and material
5
detachment,AH the five profiles were expcrimentally actually obser ved
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(a) (b)

(a)

Fig.4. Contour plots of damage w near the crack tips of superblunting (a) and branching (b).
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(b)

(a)

Fig.5. Trident crack tip profile (a) and sharp notch tip profile (b).

|
|

(a) (b)

Fig.6 Blunted notch tip profile. (a) global deformation of SECP; (b) amplified inner layers to
reveal blunted notch tip and material detachment.
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